Journals →  Tsvetnye Metally →  2024 →  #7 →  Back

RARE METALS, SEMICONDUCTORS
ArticleName Manufacturing commercial quality products from spent tungsten-containing catalysts of organic production
DOI 10.17580/tsm.2024.07.06
ArticleAuthor Bodrov A. S., Sheludchenko V. G., Beydin A. V., Rasskazov R. V.
ArticleAuthorData

Slavsky Priargunsky Mining and Chemical Production Association (PPGHO), Krasnokamensk, Russia

A. S. Bodrov, Chief Engineer, Central Research Laboratory, Candidate of Technical Sciences, e-mail: bodrant@gmail.com
V. G. Sheludchenko, Head of the Technological Laboratory, Central Research Laboratory, Candidate of Technical Sciences
A. V. Beydin, Director, Central Research Laboratory, Candidate of Technical Sciences
R. V. Rasskazov, Head of the Pilot Hydrometallurgical Shop, Central Research Laboratory

Abstract

The article describes the conducted laboratory studies on extraction of valuable components from spent tungsten-containing catalysts of organic production (STCC). The authors determined modes of digestion of industry-related raw materials, ensuring downstream manufacturing of quality tungsten products and commercial by-products. The developed technology of two-stage percolation leaching of STCC includes leaching with water at the first stage, with sodium carbonate at the second stage, providing for deposition of cesium alum from product solutions of water leaching, calcium tungstate from sodium decarbonized solutions of digestion of cakes of cesium extraction, and production of tungsten acid from calcium tungstate by hydrochloric treatment. To test the technical solutions, the authors used an assembled pilot process flow diagram and piping and instrumentation diagram of STCC recovery, including water leaching of cesium in percolation columns; sodium leaching of tungsten from the cake of cesium extraction in similar percolation columns; precipitation of cesium alum crystals by acidifying a cesium-containing solution with aluminium sulphate in a reactor equipped with a mixer; deposition of tungstate with a calcium chloride solution in reactors equipped with heating; transfer of deposited calcium tungstate in a conditioning tank into tungsten acid with intensive air hydrochloric stirring; filtration and washing of resulting tungsten acid with hot water, using Nutsche filters. Technical characteristics of the produced calcium tungstate (CaWO4) were determined to correspond to the KVGF grade. The analysis of tungsten acid showed that content of tungstic anhydride (WO3) was ≥80 %. Content of a basic substance in cesium finished products (CsAl(SO4)2 ·12H2O) was fixed within a range of 99 ± 0.5 %.

keywords Tungsten, cesium, spent catalyst, industry-related waste, alum, calcium tungstate, tungsten acid
References

1. Dyachenko A. N., Kraydenko R. I., Perederin Yu.V., Velizhanskiy A. Yu. Autoclave sodium leaching of tungsten from mineral raw materials. Polzunovskiy vestnik. 2016. No. 3. pp. 156–159.
2. Dyachenko A. N., Dugelnyy A. P., Kraydenko R. I., Chegrintsev S. N. Autoclave leaching of tungsten from tin production waste using sodium carbonate. Izvestiya Tomskogo politekhnicheskogo universiteta. 2013. Vol. 322, No. 3. pp. 62–64.
3. Zelikman A. N., Nikitina L. S. Tungsten. Moscow : Metallurgiya, 1978. 272 p.
4. Zelikman A. N. Metallurgy of refractory rare metals. Moscow : Metallurgiya, 1986. 440 p.
5. Sitdikov F. G., Galkova L. I., Pikulin K. V., Selivanov E. N. Producing calcium tungstate from low-quality concentrates. Proceedings of the scientific and practical conference “Abishev Readings-2016. Innovations in Integrated Mineral Processing”. Almaty, 2016. pp. 548–553.
6. Matthews S., Florian T., Bryony J. Heat treatment of plasmas prayed Al2O3 and Al2O3 — WO3 coatings between 500 and 1000 оС. Surface and Coatings Technology. 2012. Vol. 212. pp. 109–118.
7. Beydin A. V., Rasskazov R. V., Sheludchenko V. G., Filonenko V. S. Designing the technology of vanadium extraction from spent catalysts of sulfuric production of the hydrometallurgical plant of PJSC Priargunsky Mining and Chemical Production Association. Collection of abstracts of the open scientific and technical conference Science and Youth TVEL. Tomsk : Tomsk Polytechnic University, 2023. p. 14.
8. Bodrov A. S. Study on feasibility of applying thickened wastes of hydrometallurgical recovery of uranium ores to fill mined-out areas of mines. Gornyi Zhurnal. 2018. No. 7. pp. 40–43.
9. Morozov A. A., Alekseev O. N. A process of involving production wastes into efficient recovery. Collection of papers. Digital economy of Zabaykalsky Krai as a prospect for implementing telecommunication projects. Proceedings of the All-Russian Scientific and Practical Conference. Ed. by Sveshnikov I. V. Transbaikal State University (Chita), 2018. pp. 10–12.
10. Shchelkonogov M. A., Litvinenko L. G., Litvinenko V. G., Morozov A. A. Method of integrated treatment of pyrite cinders. Patent RF, No. 2623948. Applied: 06.04.2016. Published: 29.06.2017.
11. Mirzavaliev D. B., Parmanov S. T., Ulugov G. D. Recovery of tungstencontaining waste and production of a sodium tungstate solution. Universum: Technical Sciences. 2023. No. 10 (115). Available at: https://7universum.com/ru/tech/archive/item/16175 (аccessed: 13.05.2024).
12. Skobelev D. O. Encyclopedia of technologies. Evolution and a comparative analysis of efficiency of industrial technologies. Ed. by Skobelev D. O. Moscow, Saint Petersburg : Center of Ecological Industrial Policy, 2019. 824 p.
13. Juraev M. N., Sharopov A. G., Shaymanov T. V., Turaev Sh. B. Еvaluation of tungsten minerous in the western and eastern part of the Sarykul location of the Karatyubinsky ore field. Oriental Renaissance: Innovative, Educational, Natural and Social Sciences. 2022. Vol. 2, No. 5. pp. 438–444.
14. Yakhshiyeva Z., Bakaxonov A., Kalonov R., Muyassarova K. Amperometric determination of tungsten and antimony with a solution of naphthol derivatives. EPRA International Journal of Research and Development. 2020. Vol. 5, No. 5. pp. 478–480.
15. Mikhaylova N. N., Gasan-zade E. I., Shavshukova S. Yu., Akhmetov A. F. Issues of desactivation and regeneration of heterogeneous catalysts of oil refining and petrochemistry. NefteGazoKhimiya. 2022. No. 3. pp. 66–68.
16. Cherkasova T. G., Isakova I. V., Tikhomirova A. V., Cherkasova E. V. Recycling of spent catalysts for environmental protection. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2021. No. 4. pp. 14–20.
17. Al-Sheeha H., Meena Marafi, Vira Raghavan, Mohan Rana. Recycling and recovery routes for spent hydroprocessing catalyst waste. Industrial and Engineering Chemistry Research. 2013. Vol. 52. pp. 12794–12801.
18. Pikulin K. V., Selivanov E. N., Galkova L. I., Gulyaeva R. I. Features of tungsten extraction from spent catalysts of petroleum organic synthesis. Tsvetnye Metally. 2017. No. 11. pp. 31–36.
19. Rimoshevskiy V. S., Pavlov A. V., Mustafin R. M., But E. A. Study on a calciothermic method of treatment of waste hydroprocessing catalysts. Chernye Metally. 2019. No. 11. pp. 28.
20. Huang J., Ding Q., Wang Y., Hong H. et al. The evolution and influencing factors of international tungsten competition from the industrial chain perspective. Resources Policy. 2021. Vol. 73. 102185.
21. Shen L., Li X., Lindberg D., Taskinen P. Tungsten extractive metallurgy: A review of processes and their challenges for sustainability. Minerals Engineering. 2019. Vol. 142. 105934.
22. Plyushchev V. E., Stepin B. D. Chemistry and technology of combinations of lithium, rubidium and cesium. Moscow : Khimiya, 1970. 400 p.
23. Motylyaev A. Cesium: facts and tiny facts. Khimiya i zhizn. 2020. No. 11. Available at: https://elementy.ru/nauchno-populyarnaya_biblioteka/435688/Tseziy_fakty_i_faktiki. Accessed: 13.05.2024.
24. Adamov E. O. The green book of nuclear power engineering. Moscow : NIKIET, 2024. 232 p.
25. Vasilenko I. Ya., Vasilenko O. I. Radioactive cesium. Energiya: ekonomika, tekhnika, ekologiya. 2001. No. 7. pp. 16–22.
26. Medvedev A. S., Malochkina N. V., Balgaeva F. Sh. A hydrometallurgical method of treatment of waste oil refining catalysts. Scientific session of Moscow Engineering Physics Institute-2007 : collection of research papers. Moscow : Moscow Engineering Physics Institute, 2007. Vol. 9. pp. 125–136.
27. GOST 11884.1–78. Tungsten concentrate. Methods of determination of tungsten anhydride. Introduced: 01.07.1980.
28. GOST 213–83. Tungsten concentrate. Specifications. Introduced: 01.01.1985.
29. GOST 2197–78. Tungstic acid. Specifications. Introduced: 01.01.1980.

Language of full-text russian
Full content Buy
Back