ArticleName |
Study on the influence of temperature
on a baddeleyite concentrate chlorination process |
ArticleAuthorData |
Ural Federal University, Yekaterinburg, Russia A. A. Babintsev, Master’s Student, e-mail: babintsev.a.a@yandex.ru O. Yu. Makovskaya, Associate Professor of the Non-Ferrous Metallurgy Department, Candidate of Technical Sciences, e-mail: o.i.makovskaia@urfu.ru V. G. Lobanov, Associate Professor of the Non-Ferrous Metallurgy Department, Candidate of Technical Sciences, e-mail: lobanov-vl@yandex.ru |
Abstract |
The article describes the chlorination process of baddeleyite concentrates in the melt of chlorides of alkali and alkali-earth metals. A method of chlorination in the melt has technological advantages in comparison with dry chlorination. The authors studied the concentrate of grade PB-0 from Kovdor Mining and Beneficiation Plant, amounting to a total of 99.5% zirconium and hafnium dioxides. The baddeleyite concentrate, unlike the zirconium concentrate, contains low impurities, making easier subsequent recovery ope rations of zirconium and hafnium tetrachlorides. To chlorate the baddeleyite concentrate, the authors used melts of КСl, NaCl – KCl, NaCl – KCl – MgCl2, KCl – MgCl2, NaCl and СаCl2. It has been established that the best parameters of both the percentage of the transition of zirconium into tetrachloride (over 65%), and the chlorination rate (2.07·10–3 g/(g·min)) are attributed to the NaCl – KCl melt. The authors studied the relation between the chlorination process in the NaCl – KCl melt and temperature. Experimentally determined apparent activation energy within a temperature range of 800–1000 oC was 18.49 kJ/mol, and within a temperature range of 750–800 oC, 176.07 kJ/mol. Thus, at 750–800 oC the chlorination process takes place in a kinetic mode, and at 800–1000 oC — in a diffusion mode. It has been established that when the process temperature increases over 900 oC, there is no significant increase in weight of obtained zirconium tetrachloride. Moreover, an increase in chlorination temperature entails a greater transition of impurity elements into zirconium tetrachloride. In view of this, to conduct the process, the recommended temperature range is 900–950 oC.
The research was sponsored by funds, amounting to income from trust management of the Endowment Fund of the Institute of New Materials and Technologies, Ural Federal University, established with a participation of JSC Chelyabinsk Zinc Plant. |
References |
1. Arnold B. Zircon, zirconium, zirconia – similar names, different materials. Springer Berlin Heidelberg, 2022. 2. Zhigachev A. O., Golovin Yu. I., Umrikhin A. V., Korenkov V. V. et al. Zirconium dioxide-based ceramic materials. Moscow : Tekhnosfera, 2018. 358 p. 3. Xu L., Xiao Y., van Sandwijk A., Xu Q., Yang Y. Production of nuclear grade zirconium: A review. Journal of Nuclear Materials. 2015. Vol. 466. pp. 21–28. DOI: 10.1016/j.jnucmat.2015.07.010 4. Xiangyan Zhu, Yong Geng, Ziyan Gao, Xu Tian at al. Investigating zirconium flows and stocks in China: A dynamic material flow analysis. Resources Policy. 2023. Vol. 80. 103139. DOI: 10.1016/j.resourpol.2022.103139 5. Tsvetkov P. S. Status and prospects of development of zirconium production in Russia. Russian Economic Internet Journal. 2019. No. 3. pp. 82–84. 6. Ministry of Natural Resources of Russia. A 2020 state report on status and use of mineral resources of the Russian Federation. Moscow. 2021. Available at: https://www.mnr.gov.ru/docs/gosudarstvennye_doklady/ (accessed: 12.01.2022). 7. Zagajnov S. V., Rejbah O. E. Zircon: state and prospects of the Russian market development. Social-Economic Phenomena and Processes. 2016. Vol. 11, No. 12. pp. 44–50. 8. ITS 24–2020. Rare and rare-earth metals production: information and technical refe rence book on the best available technologies. Moscow : NTD, 2020. 329 p. 9. Khatkov V. Yu., Boyarko G. Yu., Bolsunovskaya L. M. et al. Russian zirconium industry: current issues in raw material supply. Gornye nauki i tekhnologii. 2023. No. 8(2). pp. 128–140. DOI: 10.17073/2500-0632-2023-02-83 10. Bykhovskiy L. Z., Tigunov L. P., Zubkov L. B. Zirconium and hafnium in Russia: current status, prospects of learning and development of the mineral resources base. Mineralnoe syre. Seriya geologo-ekonomicheskaya. 2007. No. 23. Moscow : VIMS, 2007. 127 p.
11. Magayumova O. N., Belokurova G. B., Looze V. V. Natural abundance, application and technologies of obtaining zirconium and its compounds. Innovatsionnye tekhnologii proizvodstva i khraneniya materialnykh tsennostey dlya gosudarstvennykh nuzhd. 2021. No. 16. pp. 151–160. 12. Menshikov I. F., Skryabin O. O. Assessment and analysis of prospects of development of zirconium production. Ekonomika promyshlennosti. 2009. No. 2. pp. 22–24. DOI: 10.17073/2072-1633-2009-2-22-24 13. Shatalov V. V., Nikonov V. I., Kotsar M. L. Prospects of providing zirconium and hafnium resources for nuclear power engineering of Russia till 2030. Atomnaya energiya. 2008. Vol. 105. pp. 190–194. 14. Ivanyuk G. Yu., Kalashnikov A. O., Sokharev V. A. et al. 3D mineralogical sampling of the Kovdor comprehensive deposit of magnetite, apatite and baddeleyite. Vestnik Kolskogo nauchnogo tsentra RAN. 2013. No. 4. pp. 44–57. 15. Perks C., Mudd G. Titanium, zirconium resources and production: a state of the art literature review. Ore Geology Reviews. 2019. Vol. 107. pp. 629–646. DOI: 10.1016/j.oregeorev.2019.02.025 16. Kosmachev V. P. Development of compositions and technology for producing nano-baddeleyite refractories for the glassmaking industry. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta. 2014. No. 6. pp. 141–147. 17. Ghasemi M. R. Ghoreishi S. M. Semi-batch and continuous carbochlorination of zirconia in a pilot plant fluidized bed reactor: optimization of operating conditions via response surface methodology. International Journal of Pharmaceutical Sciences and Research. 2017. Vol. 8, No. 12. pp. 5043–5056. DOI: 10.13040/IJPSR.0975-8232.8(12).5043-56 18. Tsurika A. A., Semenov A. A., Ukhov S. A., Lizunov A. V. et al. Obtaining zirconium tetrachloride by chlorating zirconium and zirconium oxide in sulfur. Voprosy atomnoy nauki i tekhniki. Seriya: Materialovedenie i novye materialy. 2020. No. 1. pp. 82–106. 19. Sachkov V. I., Nefedov R. A., Amelichkin I. V., Medvedev R. O., Shcherbakov P. S. Treatment of the zirconium concentrate from the Obukhovskiy deposit. Vestnik Tomskogo gosudarstvennogo universiteta. Khimiya. 2023. No. 29. pp. 83–92. 20. Baryshnikov N. V., Geger V. E., Denisova N. D. et al. Metallurgy of zirconium and hafnium. Moscow : Metallurgiya, 1979. 208 p. 21. Semenov A. A., Tsurika A. A., Ukhov S. A., Lizunov A. V. et al. Thiochlorination in the technology of titanium, zirconium and hafnium. Voprosy atomnoy nauki i tekhniki. Seriya: Materialovedenie i novye materialy. 2023. No. 1. pp. 86–110. 22. Arzhatkina O. A., Kovaleva I. V. Method of chloration of rare metal feed stock in molten salts. Patent RF, No. 2550404. Applied: 06.09.2013. Published: 10.05.2015. Bulletin No. 13. 23. Karimov I. A., Gulyakin A. I., Mukliev V. I., Rozhdestvenskiy V. V. et al. Method of chlorination of rare metals raw materials. Patent RF, No. 2261930. Applied: 25.06.2003. Published: 10.10.2005. Bulletin No. 28. 24. Elfimov I. I. Chlorination of zirconium concentrates in molten salts. Chlorine metallurgy of rare metals: collection of research papers of Giredmet (the State Institute of Rare Metals). Moscow : Metallurgiya, 1969. Vol. 24. pp. 139–153. 25. Neustroeva V. N., Negodina N. Ya., Kuznetsova G. M. et al. Chlorination of zirconium compounds. Izvestiya Tomskogo politekhnicheskogo instituta im. S. M. Kirova. 1963. Vol. 112. pp. 116–120. 26. Amdur A. M., Lkhamsuren M., Pavlov V. V., Barnasan P. The connection between the structure and thermodynamic activity of soot carbon. Izvestiya vuzov. Chernaya metallurgiya. 2014. Vol. 57, No. 6. pp. 12–15. DOI: 10.17073/0368-0797-2014-6-12-15 27. Ageev N. G., Naboych enko S. S. Metallurgical calculations, using the HSC Chemistry suite of application programs: study guide. Yekaterinburg : Ural University, 2016. 124 p. 28. GOST 6718–93. Liquid chlorine. Specifications. Introduced: 01.01.1995. 29. GOST 10157–2016. Gaseous and liquid argon. Specifications. Introduced: 01.07.2017. |