ArticleName |
Pressing of clad rods from aluminum alloys using a front deformable washer |
ArticleAuthorData |
Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia
N. I. Bushueva, Research Engineer of the Scientific Laboratory of the Dept. of Metal Forming, e-mail: n.i.bushueva@urfu.ru
G. V. Shimov, Associate Professor of the Dept. of Metal Forming, Candidate of Technical Sciences, e-mail: g.v.shimov@urfu.ru
Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia1 ; M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia2 Yu. N. Loginov, Professor of the Department of the Dept. of Metal Forming1, Doctor of Technical Sciences, Leading Researcher2, e-mail: j.n.loginov@urfu.ru |
References |
1. Sizyakov V. M., Polyakov P. V., Bazhin V. Yu. Current trends and strategic objectives in the production of aluminum and its alloys in Russia. Tsvetnye Metally. 2022. No. 7. pp. 16–23. 2. Kargin V. R., Deryabin A. Yu. On the finite element analysis of the stressstrain state during pressing of large-sized rods with small elongations. Tekhnologiya legkikh splavov. 2016. No. 3. pp. 62–68. 3. Danilin A. V., Danilin V. N., Romantsev B. A. Prediction of the structure type after pressing in products made of hard-to-deform aluminum alloys based on the results of mathematical modeling. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka metallov davleniem. 2019. No. 1. pp. 26–38. 4. Sano H., Ishikawa T., Yukawa N., Yoshida Y. et al. Effect of extrusion mode and die shape on billet skin behavior in aluminum extrusion. Journal of Japan Institute of Light Metals. 2008. Vol. 58, No. 5. pp. 183–188. DOI: 10.2464/jilm.58.183 5. Wojtaszek M., Zygula K. Manufacturing and properties оf Al – Al alloy bimetallic composites obtained from powders by hot extrusion. Composites Theory and Practice. 2022. Vol. 22. pp. 211–218. 6. Salikhanov D. R., Michurov N. S. Modeling of the rolling process of layered composite AMg3/D16/AMg3. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 2023. Vol. 25, No. 3. pp. 6–18. DOI: 10.17212/1994-6309-2023-25.3-6-18.25 7. Kazanowski P., Epler M.-E., Misolek W.-Z. Bi-metal rod extrusion – process and product optimization. Materials Science and Engineering: A. 2004. Vol. 369, Iss. 1-2. pp. 170–180. DOI: 10.1016/j.msea.2003.11.002 8. Sapanathan T., Khoddam S., Zahiri S.-H. Spiral extrusion of aluminum/copper composite for future manufacturing of hybrid rods: A study of bond strength and interfacial characteristics. Journal of Alloys and Compounds. 2013. Vol. 571. pp. 85–92. DOI: 10.1016/j.jallcom.2013.03.210 9. Huang P. H. FEM simulation and optimization on rotating extrusion of bimetal rod with constant shear friction. Journal of Physics: Conference Series. 2023. Vol. 2631. 012005. DOI: 10.1088/1742-6596/2631/1/012005 10. Bandar A. R., Misiolek W. Z., Kloske K. E., Jeong T. H. Improving flow in soft-core bi-material billets. Proceedings of the Seventh International Aluminum Technology Seminar ET2000, Aluminum Extruders Council and Aluminum Association. Chicago, Illinois. 16–19 May 2000. Vol. 2. p. 223. 11. Kuhnke S. Gensch F., Nitschkle R. et al. Influence of die surface topography and lubrication on the product quality during indirect extrusion of copper-clad aluminum rods. Metals. 2020. Vol. 10. 888. DOI: 10.3390/met10070888 12. Chen H., Giannopoulou D., Greb T. et all. Co-extrusion of compoundcast AA7075/6060 bilayer billets at various temperatures. The Minerals, Me tals & Materials Series. 2021. pp. 993–1001. DOI: 10.1007/978-3-030-75381-8_83 13. Priel E., Ungarish Z., Navi N. U. Co-extrusion of a Mg/Al composite billet: a computational study validated by experiment. Journal of Materials Processing Technology. 2016. Vol. 236. pp. 103–113. DOI: 10.1016/j.jmatprotec.2016.05.007 14. Kuhnke S., Sanabria V., Gensch F. et all. Numerical investigations on material flow during indirect extrusion of copper-clad aluminum rods. Frontiers in Materials. 2020. Vol. 7, No. 157. DOI: 10.3389/fmats.2020.0015 15. Greß T., Mittler T., Chen H. et al. Production of aluminum AA7075/6060 compounds by die casting and hot extrusion. Journal of Materials Processing Technology. 2020. Vol. 280. 116594. DOI: 10.1016/j.jmatprotec.2020.116594 16. Loginov Yu. N., Razinkin A. V., Shimov G. V. et al. Structural state and deformation of an aluminum alloy bar in the initial stage of pressing. Izvestiya vuzov. Tsvetnaya metallurgiya. 2023. Vol. 29, No. 2. pp. 29–37. DOI: 10.17073/0021-3438-2023-2-29-37 17. Loginov Yu. N., Shimov G. V., Bushueva N. I. Deformations in the non-stationary stage of pressing an aluminum alloy rod with a low elongation ratio. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 2022. Vol. 24, No. 2. pp. 39–49. DOI: 10.17212/1994-6309-2022-24.2-39-49 18. Faizov S. R., Radionova L. V. Reasons for formation and methods of eliminating air bubbles on the surface of solder rods produced by direct extrusion. Vestnik YuUrGU. Seriya ‘’Metallurgiya’’. 2023. Vol. 23, No. 1. pp. 38–46. DOI: 10.14529/met230105 19. Soares G. C. The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compression. International Journal of Impact Engineering. 2021. Vol. 156. 103940. DOI: 10.1016/j.ijimpeng.2021.103940 20. Mohamed M. S., Foster A. D., Lin J. L. et al. Investigation of deformation and failure features in hot stamping of AA6082: Experimentation and modeling. International Journal of Machine Tools & Manufacture. 2012. Vol. 53. pp. 27–38. DOI: 10.1016/j.ijmachtools.2011.07.005 21. Zhao Y., Song B., Jia C., Li B., Linlin G. Effect of deformation speed on the microstructure and mechanical properties of AA6063 during continuous extrusion process. Journal of Materials Processing Technology. 2013. Vol. 213. pp. 1855–1863. DOI: 10.1016/j.jmatprotec.2013.05.006 |