Журналы →  Tsvetnye Metally →  2024 →  №8 →  Назад

BENEFICIATION
Название Criteria for choosing optimal working media for the gas-dynamic separation of granular materials
DOI 10.17580/tsm.2024.08.01
Автор Tyukin A. P.
Информация об авторе

NUST MISIS, Moscow, Russia.

A. P. Tyukin, applicant for a degree of Doctor of Technical Sciences, the Department of Beneficiation and Processing of Minerals and Industry-Related Raw Materials, Mining Institute, Candidate of Technical Sciences, e-mail: TukinAP@yandex.ru

Реферат

The article describes main physical properties of some technically important gases, including those that directly influence efficiency of the gas-dynamic separation of granular materials with a laminar flow of gas. In particular, character of such influence was determined to propose a numerical criterion to assess feasibility of some gas for the gas-dynamic separation depending on its physical properties: density and dynamic viscosity. The article proposes a method for calculating such criterion, factoring into known density and dynamic viscosity of gas. An increase in its value shows an increase in maximum allowable linear speed of gas in an accelerating channel, contributing to ensuring its laminar movement. An increase in density and viscosity of working gas is stated to result in decreasing average distance of collection and their dispersion, and asymmetry of distribution of the collection distance is shifted to a positive field. The article presents a conclusion that a shape of distribution of every components of a separated mixture by receiving containers, in particular, asymmetry of the log-normal distribution depends on physical properties of working media. Consequently, by choosing some working gas, we can control the shape of distribution of components, improving efficiency of their distribution.

Ключевые слова Beneficiation, gas-dynamic, separation, bulk, granular, materials, air, gas, density, viscosity, temperature
Библиографический список

1. Shekhirev D. V., Dumov A. M., Strizhko V. S. Phenomenological sense of separation efficiency by Нanсoсk-Luiken and an additional criterion of efficiency. Obogashchenie Rud. 2010. No. 2. pp. 31–35.
2. Babichev A. P., Babushkina N. A., Bratkovskiy A. M. et al. Physical values. Handbook. Ed. by Grigorev I.S., Meylikhov E. Z. Moscow : Energoatomizdat, 1991. 1232 p.
3. Kikoin I. K. Tables of physical quantities. Handbook. Moscow : Atomizdat, 1976. 1008 p.
4. Meija J., Coplen T. B., Berglund M., Bièvre P. D. et al. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure and Applied Chemistry — IUPAC. 2016. Vol. 88, No. 3. pp. 265–291.
5. Wieser M. E., Holden N., Coplen T. B., Böhlke J. K. et al. Atomic weights of the elements 2011 (IUPAC Technical Report). Pure and Applied Chemistry. 2013. Vol. 85, No. 5. pp. 1047–1078.
6. Sokolov V. B. Helium. Encyclopedia of chemistry : in 5 vol. Ed. by Knunyants I. L. Moscow : Soviet Encyclopedia, 1988. Vol. 1. 623 p.
7. Legasov V. A., Sokolov V. B. Krypton. Encyclopedia of chemistry : in 5 vol. Ed. by Knunyants I. L. Moscow : Soviet Encyclopedia, 1990. Vol. 2. Duff — Copper. 671 p.
8. Karapetyants M. Kh., Drakin S. I. General and inorganic chemistry. Moscow : Khimiya, 1981. 632 p.
9. Rabinovich V. A., Khavin Z. Ya. Concise handbook of chemistry. Leningrad : Khimiya, 1977. 376 p.
10. Spitsyn V. I., Martynenko L. I. Inorganic chemistry. Part 1. Moscow, 1991. 480 p.
11. Stepin B. D., Tsvetkov A. A. Inorganic chemistry. Moscow : Vysshaya shkola, 1994. 608 p.
12. Mustafaev R. A. Thermophysical properties of hydrocarbons at high state parameters. Moscow : Energoatomizdat, 1991. 312 p.
13. Sheludyak Yu. E., Kashporov L. Ya. et al. Thermophysical properties of components of combustible systems. Moscow, 1992. 184 p.
14. Hirschfelder J.O., Bird R.B., Spotz E. L. Viscosity and other physical properties of gases and gas mixtures. Journal of Fluids Engineering. 2022. Vol. 71, No. 8. pp. 921–937.
15. Yashiya Hori, Dipayan Mondal, Keishi Kariya, Akio Miyara. Measurement of viscosity of low GWP refrigerant R1224yd(Z). The 40th Symposium on Thermophysical Properties of Japan. October 2019, Nagasaki, Japan.
16. Bhanuday Sharma. Bulk viscosity of dilute monatomic gases revisited. European Journal of Mechanics — B/Fluids. 2022. Vol. 98, No. 3. pp. 32–39.
17. Bhanuday Sharma, Rakesh Kumar, Savitha Pareek. Bulk viscosity of dilute gases and their mixtures. Fluids. 2023. Vol. 8, No. 1. 28.
18. Elvin Ramin. Dynamic viscosity of gases at temperature and pressure. Scientific Research. 2022. Vol. 7, No. 3. pp. 26–28.
19. Tyukin A. P. A physical and mathematical model of the gas-dynamic separation. Available at: https://gasflow.org (accessed in 2024).

Language of full-text русский
Полный текст статьи Получить
Назад