Journals →  Tsvetnye Metally →  2024 →  #8 →  Back

BENEFICIATION
ArticleName Influence of an ionic composition of a sludge liquid phase on technological parameters of beneficiation
DOI 10.17580/tsm.2024.08.02
ArticleAuthor Aleksandrova T. N., Lushina E. A.
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia

T. N. Aleksandrova, Head of the Mineral Dressing Department, Professor, Doctor of Technical Sciences, e-mail: Aleksandrova_TN@pers.spmi.ru
E. A. Lushina, postgraduate student of the Mineral Dressing Department, e-mail: lushina_ea@mail.ru

Abstract

The article presents the results of the study on the influence of an ionic composition of a sludge liquid phase on technological parameters of copper-nickel ore beneficiation. A decrease in surface tension on the liquid–gas boundary was found for solutions of sodium, calcium and magnesium chlorides in concentrations of 1 g/l and 5 g/l. The results of the study were used as a basis for proposing the following series of chloride-containing salts in order of reducing surface tension in distilled water: CaCl2 > MgCl2 > NaCl. The minimum value of this parameter is set for sodium chloride in a concentration of 5 g/l — 50.25 mN/m. The study on the effect of frothers on surface tension in distilled water resulted in determining a number of surfactants in order of decreasing surface activity: T66 > T80 > polypropylene glycol monobutyl ether frother (OPSB) > methyl isobutyl ketone (MIBK) > pine oil. A number of frothers have been established as their surface-active properties decrease in the presence of the chloride-containing salts under study in water: T66 > T80 > OPSB > MIBK > pine oil. Regarding the T-66 frother in a concentration of 1% (the consumption rate is 50 g/t), surface tension on the liquid – gas boundary in the presence of chloride-containing salts was 21.56 mN/m. A flotation process using salt solutions (CaCl2, MgCl2, NaCl) showed a decrease in copper and nickel in the flotation concentrate due to the depressing effect of calcium ions. An increase in the extraction of valuable components into the concentrate is correlated with an increase in the surface-active characteristics of frothers in the presence of chloride-containing salts in water due to sodium chloride ions, which probably reduce the depressing effect of calcium ions.

keywords Flotation, copper, nickel, frothers, surface tension, chlorides, impurity ions
References

1. Litvinenko V. S., Tsvetkov P. S., Dvoynikov M. V., Buslaev G. V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. Journal of Mining Institute. 2020. Vol. 244, No. 4. pp. 428–438. DOI: 10.31897/PMI.2020.4.5
2. Litvine nko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V. et al. Assessment of the role of the state in the management of mineral resources. Journal of Mining Institute. 2023. Vol. 259. pp. 95–111. DOI: 10.31897/PMI.2022.100
3. Ignatkina V. A. Selective reagent regimes of flotation of non-ferrous and noble metal sulfides from refractory sulfide ores. Tsvetnye Metally. 2016. No. 11. pp. 27–33.
4. Aleksandrova T. N., O’Connor С. Processing of platinum group metal ores in Russia and South Africa: current state and prospects. Journal of Mining Institute. 2020. Vol. 244. pp. 462–473. DOI: 10.31897/pmi.2020.4.9
5. Aleksandrova T. N., Prokhorova E. O. Modification of properties of rockforming minerals during flotation. Mining Inf. Anal. Bull. 2023. Vol. 12. P. 123–138. DOI: 10.25018/0236_1493_2023_12_0_123
6. Bazhin V. Yu., Muzipov A. Z. Mechanisms of forming fine particles at ore processing and problems of their removal from the furnace. Nanophysics and nanomaterials : Proceedings of the International Symposium devoted to the 110th birthday of V. B. Aleskovsky and the 115th birthday of L. A. Sena. Saint Petersburg, 23–24 November 2022. pp. 34–39.
7. Kuskov V. B., Ilin E. S. Study of the agglomeration process of various types of raw materials by extrusion method. Mining informational and analytical bulletin. 2022. No. 6–1. pp. 279–289. DOI: 10.25018/0236_1493_2022_61_0_279
8. Matveeva T. N., Gromova N. K., Minaev V. A. Quantitative evaluation of an adsorption layer of combined diethyldithiocarbamate on chalkopyrite and arsenopyrite by a method of measuring the parameters of surface relief. Tsvetnye Metally. 2018. No. 7. pp. 27–32.
9. Romashev A. O., Nikolaeva N. V., Gatiatullin B. L. Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition. Journal of Mining Institute. 2022. Vol. 256. pp. 677–685. DOI: 10.31897/PMI.2022.77
10. Nikolaeva N. V., Kallaev I. T. Features of copper-molybdenum ore grinding. Mining informational and analytical bulletin. 2024. No. 1. pp. 52–66. DOI: 10.25018/0236_1493_2024_1_0_52
11. Afanasova A. V., Aburiva V. A. Growth of low-dimensional structure noble metals in carbonaceous materials under microwave treatment. Mining informational and analytical bulletin. 2024. No. 1. pp. 20–35. DOI: 10.25018/0236_1493_2024_1_0_20
12. Vallejos P., Yianatos J., Grau R., Yañez A. Evaluation of flotation circuits design using a novel approach. Minerals Engineering. 2020. Vol. 158. DOI: 10.1016/J.MINENG.2020.106591
13. Mashevskiy G. N., Ushakov E. K., Yakovleva T. A. Digital technology for optimizing the sodium sulphide dosage during copper ore flotation. Obogashchenie Rud. 2021. No. 3. pp. 18–33.
14. Yakovleva T. A., Romashev A. O., Mashevskiy G. N. Digital technologies for optimizing the dosing of flotation reagents during flotation of non-ferrous metal ores. Mining informational and analytical bulletin. 2022. No. 6–2. pp. 175–188. DOI: 10.25018/0236_1493_2022_62_0_175
15. Ignatkina V. A., Makavetskas A. R., Kayumov A. A., Aksenova D. D. Causes of degradation of production data in flotation of copper-bearing sulfide ore extracted from cupriferous pyrite deposits by open stoping. Mining informational and analytical bulletin. 2021. No. 9. pp. 5–22. DOI: 10.25018/0236_1493_2021_9_0_5.4
16. Aleksandrova T. N., Kuznetsov V. V., Ivanov E. A. Investigation of the water hardness ions impact on the copper-nickel ores flotation probability. Mining informational and analytical bulletin. 2022. No. 6-1. pp. 263–278. DOI: 10.25018/0236_1493_2022_61_0_263
17. Tao D. Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review. Minerals Engineering. 2022. Vol. 183. DOI: 10.1016/J.MINENG.2022.107554
18. Manono M. S., Corin K. C., Wiese J. G. The effect of ionic strength of plant water on foam stability: A 2-phase flotation study. Minerals Engineering. 2013. Vol. 40. pp. 42–47.
19. Corin K. C., Tetlow S., Manono M. S. Considering the action of fro thers under degrading water quality. Minerals Engineering. 2022. Vol. 181. DOI: 10.1016/J.MINENG.2022.107546
20. Afanasova A. V., Aburova V. A., Prokhorova E. O., Lushina E. A. Investigation of the influence of depressors on flotation-active rock-forming mine rals in sulphide goldbearing ore flotation. Mining Inf. Anal. Bull. 2022. Vol. 6, No. 2. pp. 161–174. DOI: 10.25018/0236_1493_2022_62_0_161
21. Dong J., Liu Q., Yu L., Subhonqulov S. H. Activation mechanism of copper ion in arsenopyrite flotation in high pH value. Minerals Engineering. 2022. Vol. 179. DOI: 10.1016/J.MINENG.2022.107465
22. Pattanaik A., Venugopal R. Investigation of adsorption mechanism of reagents (surfactants) system and its applicability in iron ore flotation – An overview. Colloid and Interface Science Communications. 2018. Vol. 25. pp. 41–65. DOI: 10.1016/J.COLCOM.2018.06.003

23. Manono M. S., Corin K. C. Considering specific ion effects on froth stability in sulfidic Cu-Ni-PGM ore flotation. Minerals. 2022. Vol. 12, No. 3. DOI: 10.3390/min12030321
24. Quinn J. J., Kracht W., Gomez C. O., Gagnon C. et al. Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties. Minerals Engineering. 2007. Vol. 20. pp. 1296–1302.
25. October L. L., Corin K. C., Manono M. S., Schreithofer N. et al. A fundamental study considering specific ion effects on the attachment of sulfide minerals to air bubbles. Minerals Engineering. 2020. Vol. 151. DOI: 10.1016/j.mineng.2020.106313
26. Cao M., Bu H., Li S., Meng Q. et al. Impact of differing water hardness on the spodumene flotation. Minerals Engineering. 2021. Vol. 172. DOI: 10.1016/J.MINENG.2021.107159
27. Zhan R., Yang Z., Bloom I., Pan L. Significance of a solid electrolyte interphase on separation of anode and cathode materials from spent Li-ion batteries by froth flotation. ACS Sustainable Chemistry & Engineering. 2021. Vol. 9. pp. 531–540. DOI: 10.1021/acssuschemeng.0c07965
28. Zhu B., Liu Y., Wang P., Liu R. et al. Influence of inorganic salt additives on the surface tension of sodium dodecylbenzene sulfonate solution. Processes. 2023. Vol. 11. DOI: 10.3390/pr11061708
29. Li B., Shi Q., Liu D., Jin S. et al. The effect of nascent calcium carbonate inhibiting the flotation behavior of calcite. Minerals Engineering. 2020. Vol. 180. DOI: 10.1016/J.MINENG.2022.107478
30. Saavedra Moreno Y., Bournival G., Ata S. Foam stability of flotation frothers under dynamic and static conditions. Separation and Purification Technology. 2021. Vol. 274. DOI: 10.1016/J.SEPPUR.2020. 117822
31. Castro S., Miranda C., Toledo P., Laskowski J. S. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. International Journal of Mineral Processing. 2013. Vol. 124. pp. 8–14.
32. Wen J., Shi K., Sun Q., Sun Z. et al. Measurement for surface tension of aqueous inorganic salt. Front. Energy Res. 2018. Vol. 6. DOI: 10.3389/fenrg.2018.00012
33. Kolmakov K. M. Chemistry of surface phenomena (colloid chemistry) : study guide. Penza : PSU, 2017. 322 p.
34 Zavodovskiy A. G. Concentration and temperature dependency of the saline surface tension. Vestnik kibernetiki. 2024. Vol. 23, No. 1. pp. 75–80. DOI: 10.35266/1999-7604-2024-1-10
35. Fedorova A. A., Ulitin M. V. Surface tension and adsorption of electrolytes on the boundary of liquid and gas phases. Zhurnal fizicheskoy khimii. 2007. Vol. 81, No. 7. pp. 1278–1281.
36. Abramov A. A. Flotation methods of beneficiation : textbook. 3rd ed., rev., updated. Moscow : Gornaya kniga, 2008. 711 p.

Language of full-text russian
Full content Buy
Back