ArticleName |
Determining the influence
of parameters of electrochemical polishing of aluminum alloys on roughness and surface reflectivity |
Abstract |
Aluminum-based alloys are applied in a wide variety of sectors: construction, aircraft and ship construction, car industry, furniture industry, oil and gas industry, power engineering, and fuel industry. One of promising methods of treating parts from aluminum alloys is electrochemical polishing, creating the esthetic surface texture by achieving high reflectivity and low roughness. Low production cost, high performance, and no dirt from polishing pastes on the surface are critical advantages of electrochemical polishing of aluminum alloys over mechanical polishing. However, its disadvantages are failure to treat parts consisting from different metals and alloys, namely no universal electrolyte. The authors studied electrochemical polishing of aluminum alloys with the electrolyte, containing ethyl alcohol and chloric acid. The article describes the studied influence on a volumetric ratio of the electrolyte components on the quality of finished surfaces of aluminum alloys AD1, AD31, AMg6 and D16. The authors studied the influence of process temperature, duration, and voltage supplied to the cell on roughness and reflectivity of the surface of the alloys under study. It has been determined that the most glossy surface with minimum roughness is achieved, when treating them in the electrolyte with a volumetric ratio of HClO4:C2H5OH = 1:4 at 10 oC. The article describes the analysis of profilograms of treated surfaces of the alloys under study. It has been found that electrochemical polishing does not smooth surface macrodefects. Polishing contributes to achieving a more uniform surface structure as proved by the obtained micrographs. |
References |
1. Hou Y., Li R., Liang J. Simultaneous electropolishing and electrodeposition of aluminum in ionic liquid under ambient conditions. Applied Surface Science. 2018. Vol. 434. pp. 918–921. DOI: 10.1016/j.apsusc.2017.11.034 2. Han W., Fang F. Fundamental aspects and recent developments in electropolishing. International Journal of Machine Tools and Manufacture. 2019. Vol. 139. pp. 1–23. DOI: 10.1016/j.ijmachtools.2019.01.001 3. Bekmurzayeva A., Duncanson W. J., Azevedo H. S., Kanayeva D. Surface modification of stainless steel for biomedical applications: Revisiting a centuryold material. Materials Science and Engineering: C. 2018. Vol. 93. pp. 1073–1089. DOI: 10.1016/j.msec.2018.08.049 4. Wang Y., Wei X., Li Z., Sun X. et al. Experimental investigation on the effects of different electrolytic polishing solutions on nitinol cardiovascular stents. Journal of Materials Engineering and Performance. 2021. Vol. 30. pp. 4318–4327. DOI: 10.1007/s11665-021-05736-x 5. Seon E., Jang S., Raj M. R., Tak Y., Lee G. Ultrahigh energy density and long-life cyclic stability of surface-treated aluminum-ion supercapacitors. Applied Materials & Interfaces. 2022. Vol. 14. pp. 45059–45072. DOI: 10.1021/acsami.2c15701 6. Li Y., Song M., Zhu P., Lin Y.-R. et al. Flash electropolishing of BCC Fe and Fe-based alloys. Journal of Nuclear Materials. 2023. Vol. 586. pp. 1–11. DOI: 10.1016/j.jnucmat.2023.154672 7. Horváth B., Schäublin R., Dai Y. Flash electropolishing of TEM lamellas of irradiated tungsten. Nuclear Instruments and Methods in Physics Research B. 2019. Vol. 449. pp. 29–34. DOI: 10.1016/j.nimb.2019.04.047 8. Aebersold J. F., Stadelmann P. A., Matlosz M. A rotating disk electropolishing technique for TEM sample preparation. Ultramicroscopy. 1996. Vol. 62. pp. 157–169. DOI: 10.1016/0304-3991(95)00144-1 9. Mingear J., Zhang B., Hartl D., Elwany A. Effect of process parameters and electropolishing on the surface roughness of interior channels in additively manufactured nickel-titanium shape memory alloy actuators. Additive Manufacturing. 2019. Vol. 27. pp. 565–575. DOI: 10.1016/j.addma.2019.03.027 10. Zaki S., Zhang N., Gilchrist M. D. Electropolishing and shaping of microscale metallic features. Micromachines. 2022. Vol. 13. pp. 1–35. DOI: 10.3390/mi13030468 11. Asgari V., Noormohammadi M., Ramazani A., Kashi M. A. A new approach to electropolishing of pure Ti foil in acidic solution at room temperature for the formation of ordered and long TiO2 nanotube arrays. Corrosion Science. 2018. Vol. 136. pp. 38–46. DOI: 10.1016/j.corsci.2018.02.040 12. Hopkins P. D., Farrer R. A. A green method to produce nanoporous aluminum oxide templates and the direct application in the synthesis of nanowires. Applied Materials Today. 2023. Vol. 32. 101768. DOI: 10.1016/j.apmt.2023.101768 13. Nakajima D., Kikuchi T., Natsui S., Suzuki R. O. Mirror-finished superhydrophoic aluminum surfaces modified by anodic alumina nanofibers and self-assembled monolayers. Applied Surface Science. 2018. Vol. 440. pp. 506–513. DOI: 10.1016/j.apsusc.2018.01.182 14. Yuan Y., Zhang D., Zhang P., Zhang F. et al. Voltage dependence of nanopattern morphology in electropolished aluminum: a theoretical study. Journal of the Electrochemical Society. 2022. Vol. 169, No. 6. 063509. DOI: 10.1149/1945-7111/ac7670 15. Yuan Y., Zhang D., Zhang G., Zhang P. et al. Voltage dependence of nanopattern morphology and size in electropolished monocrystalline aluminum: an experimental study. Journal of the Electrochemical Society. 2022. Vol. 169, No. 5. 053512. DOI: 10.1149/1945-7111/ac71d7 16. Yuan Y., Zhang D., Zhang F., Yang C., Gan Y. Crystallographic orientation dependence of nanopattern morphology and size in electropolished polycrystalline and monocrystalline aluminum: an EBSD and SEM study. Journal of the Electrochemical Society. 2020. Vol. 167, No. 11. 113505. DOI: 10.1149/1945-7111/aba6c7 17. Konovalov V. V., Zangari G., Metzger R. M. Highly ordered nanotopographies on electropolished aluminum single crystals. Chemistry of Materials. 1999. Vol. 11, No. 8. pp. 1949–1951. 18. Yuzhakov V. V., Takhistov P. V., Miller A. E., Chang H. Pattern selection during electropolishing due to double-layer effects. Chaos: An Interdisciplinary Journal of Nonlinear Science. 1999. Vol. 9, No. 1. pp. 62–77. DOI: 10.1063/1.166380 19. Yi R., Ji J., Zhan Z., Deng H. Mechanism study of electropolishing from the perspective of etching isotropy. Journal of Materials Processing Technology. 2022. Vol. 305. 117599. DOI: 10.1016/j.jmatprotec.2022.117599 20. Landolt D. Fundamental aspects of electropolishing. Electrochimica Acta. 1987. Vol. 32, No. 1. pp. 1–11. DOI: 10.1016/0013-4686(87)87001-9
21. Wang F., Zhang X., Deng H. A comprehensive study on electrochemical polishing of tungsten. Applied Surface Science. 2019. Vol. 475. pp. 587–597. DOI: 10.1016/j.apsusc.2019.01.020 22. Metz F. I. Electropolishing of metals. Ames : Iowa State University, 1960. 175 p. 23. Zhang L., Zhong B. Electropolishing behavior of 8xxx Al alloy in perchloric acid and ethanol solution. Journal of Physics: Conference Series. 2023. Vol. 2529. 012021. DOI: 10.1088/1742-6596/2529/1/012021 24. Ricker R. E., Miller A. E., Yue D.-F., Banerjee G., Bandyopadhyay S. Nanofabrication of a quantum dot array: atomic force microscopy of electropolished aluminum. Journal of Electronic Materials. 1996. Vol. 25. pp. 1585–1592. DOI: 10.1007/BF02655580 25. Yi R., Zhang Y., Zha ng X., Fang F., Deng H. A generic approach of polishing metals via isotropic electrochemical etching. International Journal of Machine Tools and Manufacture. 2020. Vol. 150. 103517. DOI: 10.1016/j.ijmachtools.2020.103517 26. Lausmaa J., Kasemo B., Mattsson H., Odelius H. Multi-technique surface characterization of oxide films on electropolished and anodically oxidized titanium. Applied Surface Science. 1990. Vol. 45. pp. 189–200. DOI: 10.1016/0169-4332(90)90002-h 27. Zhou X., Thompson G. E., Habazaki H., Shimizu K. et al. Copper enrichment in Al – Cu alloys due to electropolishing and anodic oxidation. Thin Solid Films. 1997. Vol. 293, No. 1-2. pp. 327–332. DOI: 10.1016/S0040-6090(96)09117-1 28. Movsisyan B. V., Bagdasaryan A. S. Influence of parameters of electrolysis in acid environment on the process of electrochemical polishing of aluminum. Aktualnye nauchnye issledovaniya v sovremennom mire. 2021. No. 5-1. pp. 175–182. 29. Sarsanedas M. P. Application of H2SO4 as an electrolyte in metal smoothing and polishing processes by ion transfer using free solid bodies. Patent RF, No. 2750390. Applied: 21.01.2019. Published: 28.06.2021. Bulletin No. 19. 30. Tileuberdi T., Ji X., Pan M., Lyu A. et al. Obtaining and studying the properties of a polyvinyl alcohol/sodium alginate hydrogels. Vestnik Tomskogo gosudarstvennogo universiteta. 2020. No. 20. pp. 30–37. DOI: 10.17223/24135542/20/3 31. Luts A. R., Zakamov D. V. Preparation and microscopic analysis of samples of aluminum alloys with dispersed hardening with titanium carbide. Sovremennye materialy, tekhnika i tekhnologii. 2020. Vol. 32, No. 5. pp. 62–66. DOI: 10.47581/2020/30.10.2020/SMTT/32.5.010 32. Leletich V. S., Vedernikova I. I. Chemical and electrochemical polishing. International Scientific and Technical Conference of Young Scientists of Shukhov Belgorod State Technological University. Belgorod, 01–20 May 2019. pp. 1483–1487. 33. GOST 4784–2019. Aluminium and wrought aluminium alloys. Grades. Introduced: 01.09.2019. 34. GOST 9.305–84. Unified system of corrosion and ageing protection. Metal and non-metal inorganic coatings. Technological process operations for coating production. Introduced: 01.01.1986. 35. GOST 4328–77. Reagents. Sodium hydroxide. Specifications. Introduced: 01.07.1978. 36. GOST 11125–84. Super pure nitric acid. Specifications. Introduced: 01.01.1986. 37. GOST 5962–2013. Rectified ethyl alcohol from edible raw material. Specifications. Introduced: 01.07.2014. |