Journals →  Tsvetnye Metally →  2024 →  #8 →  Back

SCIENTIFIC DEVELOPMENTS OF THE D. MENDELEEV UNIVERSITY OF CHEMICAL TECHNOLOGY OF RUSSIA AND UNIVERSITY PARTNERS
ArticleName Using brucite-containing waste from refractory manufacturing, when treating wastewater to remove copper, nickel and cadmium ions
DOI 10.17580/tsm.2024.08.07
ArticleAuthor Chernyshev P. I., Azopkov S. V., Kruchinina N. E.
ArticleAuthorData

Mendeleev University of Chemical Technology of Russia, Moscow, Russia

P. I. Chernyshev, Postgraduate Student of the Industrial Ecology Department, e-mail: pchernishev89@mail.ru
S. V. Azopkov, Head of the Laboratory, the Industrial Ecology Department, Candidate of Technical Sciences, e-mail: s.azopkov@muctr.ru
N. E. Kruchinina, Head of the Industrial Ecology Department, Doctor of Technical Sciences, e-mail: kruchinina.n.e@muctr.ru

Abstract

Increasing attention is paid to issues related to electroplating wastewater treatment. It is equally important to search for, and introduce new highly efficient technologies of processing bulk mineral waste accumulating at various plants. As part of the conducted research, we assessed an opportunity of using brucite-containing waste from refractory manufacturing as an experimental chemical agent for precipitation of heavy metal ions. Efficiency of removal (precipitation) of heavy metal ions was studied on model wastewater of rinsing parts on the electroplating section. It has been established that an efficient dose of brucite-containing waste to reach a standard residual concentration of heavy metals of 0.05 mg/dm3 or less is 2.0 g/dm3. It has been determined that minimum period of the brucite-containing waste/wastewater contact is 45 minutes. Heat treatment of brucite-containing waste at 500 оС during 60 minutes contributes to a considerable increase in heavy metal precipitation efficiency and reduction of a dose of the chemical agent for precipitation to 1.5 g/dm3 without losing efficiency. Water treatment from heavy metals is supposed to include parallel processes of neutralization, forming poorly soluble hydroxides, sorption of combinations of heavy metals on the surface of brucite-containing waste, and processes of ion exchange on the surface of magnesium oxides. Using wastes from refractory manufacturing in processes of engineering protection of environment will contribute to not only reducing volumes of waste dumping, but also making the first step to implementing the Zero Waste concept as part of closed-loop economy.

keywords Brucite-containing waste, wastewater treatment, heavy metals, precipitation, heat treatment, refractories
References

1. Averina J. M., Kaliakina G. E., Zhukov D. Y., Kurbatov A. Y., Shumova V. S. Development and design of a closed water use cycle. 19th International Multidisciplinary Scientific Geoconference (SGEM 2019) Bulgaria. 2019. Vol. 19. pp. 145–152. DOI: 10.5593/sgem2019/3.1/S12.019

2. Averina Yu. M., Kalyakina G. E., Menshikov V. V., Kapustin Yu. I., Boldyrev V. S. Neutralisation process design for electroplating industry wastewater containing chromium and cyanides. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta imeni N. E. Baumana. Seriya: Estestvennye nauki. 2019. No. 3. pp. 70–80. DOI: 10.18698/1812-3368-2019-3-70-80
3. Edelstein M., Ben-Hur M. Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae. 2018. Vol. 234. pp. 431–444. DOI: 10.1016/j.scienta.2017.12.039
4. Gupta N., Khan D. K., Santra S. C. Determination of public health hazard potential of wastewater reuse in crop production. World Review of Science, Technology and Sustaunable Development (WRSTSD). 2010. Vol. 7, No. 4. pp. 328–340. DOI: 10.1504/WRSTSD.2010.032741
5. Liu L., Li W., Song W., Guo M. Remediation techniques for heavy metalcontaminated soils: principles and applicability. Science of the Total Environment. 2018. Vol. 633. pp. 206–219. DOI: 10.1016/j.scitotenv.2018.03.161
6. Qasem N. A. A., Mohammed R. H., Lawal D. U. Removal of heavy metal ions from wastewater: a comprehensive and critical review. Clean Water. 2021. Vol. 4, No. 36. DOI: 10.1038/s41545-021-00127-0
7. Kuzin E. N., Kruchinina N. E., Chernyshev P. I., Vizen N. S. Synthesis of titanium trichloride. Inorganic Materials. 2020. Vol. 56, No. 5. pp. 507–511. DOI: 10.1134/S002016852005009X
8. Thomas M., Bak J., Królikowska J. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: short review. Desalination and Water Treatment. 2020. Vol. 208. pp. 261–272. DOI: 10.5004/dwt.2020.26689
9. Thomas M., Melichová Z., Šuránek M., Kuc J. et al. Removal of zinc from concentrated galvanic wastewater by sodium trithiocarbonate: process optimization and toxicity assessment. Molecules. 2023. Vol. 28, No. 2. 546. DOI: 10.3390/molecules28020546
10. Kuzin E. N., Averina Yu. M., Kurbatov A. Yu., Sakharov P. A. Wastewater treatment in the electroplating industry using composite coagulants-reducers. Tsvetnye Metally. 2019. No. 10. pp. 91–96.
11. Kuzin E. N., Kruchinina N. E. Obtaining hardened forms of aluminiumsilicate coagulants and their use in water purification and water treatment. Tsvetnye Metally. 2016. No. 10. pp. 8–13.
12. Kolesnikov A. V., Pyae Aung, Davydkova T. V., Kolesnikov V. A. Establishment of regularities of electroflotation extraction of non-ferrous metal (Cu, Ni, Zn, Co, Fe) hydroxides from wastewater of various compositions in the presence of industrial surfactants. Non-ferrous Metals. 2021. No. 1. pp. 3–9.
13. Gaydukova A., Kolesnikov A. V., Gubin A., Kolesnikov V. Selective separation of rare-earth metal ions from aqueous solutions on the example of slightly soluble cerium and lanthanum compounds using electroflotation method in a flow-through plant. Separation and Purification Technology. 2019. Vol. 223. pp. 260–263. DOI: 10.1016/j.seppur.2019.04.047
14. Gaydukova A. M., Pokhvalitova A. A., Konkova T. V., Stoyanova A. D. The effect of salinity on the efficiency of wastewater treatment from iron(III) ions by an electroflotosorption method. Izvestiya vuzov. Seriya: Khimiya i khimicheskaya tekhnologiya. 2022. Vol. 65, No. 12. pp. 119–125. DOI: 10.6060/ivkkt. 20226512.6587
15. Gaydukova A., Konkova T., Kolesnikov V., Pokhvalitova A. Adsorption of Fe3+ ions onto carbon powder followed by adsorbent electroflotation. Environ mental Technology and Innovation. 2021. Vol. 23. 101722. DOI: 10.1016/j.eti.2021.101722
16. Öztel M. D., Kuleyin A., Akbal F. Treatment of zinc plating wastewater by combination of electrocoagulation and ultrafiltration process. Water Science & Technology. 2020. Vol. 82, No. 4. pp. 663–672. DOI: 10.2166/wst.2020.357
17. Obotey Ezugbe E., Rathilal S. Membrane technologies in wastewater treatment: a review. Membranes. 2020. Vol. 10, No. 5. 89. DOI: 10.3390/membranes10050089
18. Bektenov N. A., Tsoy I. G., Kambarova E. A., Ybyrayymzhanova L. K. Water purification from heavy metals with ionites. The Scientific Heritage. 2019. Vol. 1, No. 38. pp. 30–34.
19. Vinogradov S. S. Environmentally safe electroplating. Ed. by V. N. Kudryavtsev. 2nd ed., rev. and updated. Moscow : Globus, 2002. 352 p.
20. Bashir A., Malik L. A., Ahad S., Manzoor T. et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environmental Chemistry Letters. 2019. Vol. 17. pp. 729–754. DOI: 10.1007/s10311-018-00828-y
21. Ince M., Ince O. K. An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review. International Journal of Pure and Applied Sciences. 2017. Vol. 3(2). pp. 10–19. DOI: 10.29132/ijpas.372335
22. Razzak S. A., Faruque M. O., Alsheikh Z., Alsheikhmohamad L. et al. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances. 2022. Vol. 7. 100168. DOI: 10.1016/j.envadv.2022.100168
23. Mezhuev Ya. O., Korshak Yu. V., Vagramyan T. A., Abrashov A. A. et al. New anticorrosion coatings based on crosslinked copolymers of pyrrole and epoxy-containing compounds. International Polymer Science & Technology. 2014. Vol. 41, No. 4. pp. 53–60. DOI: 10.1177/0307174X1404100409
24. Abrashov A., Grigoryan N., Korshak Y., Vagramyan T. et al. Regularities of the formation of a green superhydrophobic protective coating on an aluminum alloy after surface modification with stearic acid solutions. Metals. 2021. Vol. 11, No. 11. 1718. DOI: 10.3390/met11111718
25. Kuzin E. N. Joint processing of quartz-leucoxene concentrate and brucite-containing waste from the production of refractory materials to obtain complex coagulants. Steklo i keramika. 2023. Vol. 96, No. 7. pp. 43–49. DOI: 10.14489/glc.2023.07.pp.043-049
26. Kuzin E. N. Application of the method of atomic emission spectroscopy with microwave (magnetic) plasma in the processes of identifying the chemical composition of steelmaking waste. Chernye Metally. 2022. No. 10. pp. 79–82.
27. Kuzin E. N., Fadeev A. B., Kruchinina N. E., Nosova T. I. et al. Use of innovative reagents for treatment of acid-base electroplating wastewater. Galvanotekhnika i obrabotka poverkhnosti. 2020. Vol. 28, No. 3. pp. 37–44. DOI: 10.47188/0869-5326_2020_28_3_37
28. Bobyleva S. A. Sorption treatment of wastewater from heavy metal ions using brucite : thesis … of Candidate of Technical Sciences. Novosibirsk, 2005. 156 p.
29. Kuzin E. N., Kruchinina N. E. Titanium-containing coagulants for foundry wastewater treatment. CIS Iron and Steel Review. 2020. No. 2. pp. 66–69.
30. de Mello Santos V. H., Campos T. L. R., Espuny M., de Oliveira O. J. Towards a green industry through cleaner production development. Environmental Science and Pollution Research (ESPR). 2022. Vol. 29. pp. 349–370. DOI: 10.1007/s11356-021-16615-2

Language of full-text russian
Full content Buy
Back