Журналы →  Обогащение руд →  2024 →  №4 →  Назад

МЕТОДЫ АНАЛИЗА В ПРОЦЕССАХ ОБОГАЩЕНИЯ
Название Термодинамический анализ процессов химического обогащения железо-титановых руд: расчет термохимических констант
DOI 10.17580/or.2024.04.07
Автор Понарядов А. В., Котова О. Б., Силаев В. И., Устюгов В. А.
Информация об авторе

Институт геологии Коми научного центра Уральского отделения РАН, Сыктывкар, РФ

Понарядов А. В., аспирант, alex401@rambler.ru

Котова О. Б., главный научный сотрудник, д-р геол.-минерал. наук, kotova@geo.komisc.ru

Силаев В. И., главный научный сотрудник, д-р геол.-минерал. наук, silaev@geo.komisc.ru

 

Сыктывкарский государственный университет им. Питирима Сорокина, Сыктывкар, РФ

Устюгов В. А., доцент, канд. физ.-мат. наук, ustyugov@syktsu.ru

Реферат

Усовершенствованы методы расчета термохимических констант железо-титановых и других оксидов при нормальных условиях (на примере ильменита, магнетита, перовскита, псевдобрукита и др.) как основа термодинамического анализа для выявления потенциала фазовых превращений в процессах химического обогащения комплексных руд. На базе гиперболической модели, учитывающей внутреннее строение соединений (тип кристаллической решетки, число занятых позиций), проведен расчет теплоемкости и энтропии соединений системы Fe–Ti–O, построена кривая зависимости теплоемкости от температуры. Разработан метод расчета стандартной энтальпии образования оксидов. Предложенные методы расчета уточняют эмпирические данные по железо-титановым и другим оксидам, предсказывают значения теплоемкости и стандартной энтальпии образования малоизученных соединений.

Работа выполнена в рамках тем Государственного задания Института геологии ФИЦ Коми НЦ УрО РАН.

Ключевые слова Комплексные руды, термодинамический анализ, фазовые превращения, железо-титановые оксиды, теплоемкость, энтропия, энтальпия
Библиографический список

1. State report on the state and use of mineral resources of the Russian Federation in 2021. Moscow: VIMS, 2022. 626 p.
2. Bykhovskiy L. Z., Arkhipova N. A. Strategic rare metal supply in Russia: Current state and future prospects. Gornyi Zhurnal. 2017. No. 7. pp. 4–10.
3. Kotova O. B., Ozhogina E. G., Ponaryadov A. V. Technological mineralogy: Development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit). Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 632-641.
4. Pirogov B. I., Ozhogina E. G. Principles and methods of technological mineralogy in processing of solid mineral resources. Vestnik Geonauk. 2020. Vol. 2. pp. 11–14.
5. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russian Collection, 2020. 374 p.
6. Nokhrina O. I., Rozhikhina I. D., Rybenko I. A., Golodova M. A., Izrailskii A. O. Hydrometallurgical enrichment of polymetallic and ferromanganese ore. Izvestiya Vuzov. Chernaya Metallurgiya. 2021. Vol. 64, No. 4. pp. 273–281.
7. Yuryev B. P., Goltsev V. A., Dudko V. A. Study of thermochemical processes during firing of siderite ores. Stal'. 2023. Vol. 11. pp. 2–7.
8. Souza R., Queiroz C., Brant J., Brocchi E. Pyrometallurgical processing of a low copper content concentrate based on a thermodynamic assessment. Minerals Engineering. 2019. Vol. 130. pp. 156–164.
9. Mazukhina S., Krasavtseva E., Makarov D., Maksimova V. Thermodynamic modeling of hypergene processes in loparite ore concentration tailings. Minerals. 2021. Vol. 11, Iss. 9. DOI: 10.3390/min11090996
10. Kotova O. B., Ustyugov V. A., Sun S., Ponaryadov A. V. Mullite production: phase transformations of kaolinite, thermodynamics of the process. Zapiski Gornogo Instituta. 2022. Vol. 254. pp. 129–135.
11. Akberdin A., Kim A. S., Sultangaziyev R., Orlov A. S. Thermodynamic modeling of the process of processing copper ores into matte using borate ores. Heliyon. 2024. DOI: 10.2139/ssrn.4737514
12. Silva A. M., Souza R. F. M., Aguilera L. S., de Campos J. B., Brocchi E. A. Upgrade of titanium content in a vanadiferrous titanomagnetite waste: Design of a roastleach route based on thermodynamics simulations. Minerals Engineering. 2022. Vol. 179. DOI: 10.1016/j.mineng.2022.107460
13. Lei Y., Sun F., Liu X., Zhao Z. Understanding the wet decomposition processes of tungsten ore: Phase, thermodynamics and kinetics. Hydrometallurgy. 2022. Vol. 213. DOI: 10.1016/j.hydromet.2022.105928

14. Ponaryadov A. V. Minerals and processing features of ilmenite-leucoxene ores of Pizhemskoe deposit, Middle Timan. Vestnik Instituta Geologii Komi NTs UrO RAS. 2017. No. 1. pp. 29–36.
15. Kuzmin M. P., Begunov A. I. Approximate calculations of thermodynamic characteristics of intermetallic compounds based on aluminum. iPolytech Journal. 2013. Vol. 72, No. 1. pp. 98–101.
16. Landau L. D., Lifshitz E. M. Statistical physics. Part 1. Moscow: Physmatlit, 2005. 616 p.
17. Zaitseva O. V., Trofimov E. A. Thermodynamic model for describing high-entropy oxide phases with the M-type hexaferrite structure. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Khimiya. 2022. Iss. 14, No. 3. pp. 109–118.
18. Li X., Yang L., Zhou Q., Qi T., Liu G., Peng Z. A split-combination method for estimating the thermodynamic properties (Go and Ho) of multicomponent minerals. Applied Clay Science. 2020. Vol. 185. DOI: 10.1016/j.clay.2019.105406
19. Uspenskaya I. A., Ivanov A. S., Konstantinova N. M., Kutsenok I. B. Ways of estimating the heat capacity of crystalline phases. Zhurnal Fizicheskoy Khimii. 2022. Vol. 96, No. 9. pp. 1302–1310.
20. Vanhinsberg V. J., Vriend S. P., Schumacher J. C. A new method to calculate end-member thermodynamic properties of minerals from their constituent polyhedra I: enthalpy, entropy and molar volume. Journal of Metamorphic Geology. 2005. Vol. 23. pp. 165–179.
21. Ryabukhin A. G. Mathematical models for calculating thermal constants. Izvestiya Chelyabinskogo Nauchnogo Tsentra UrO RAS. 2007. Iss. 1. pp. 24–36.
22. Nikiforova A. K., Gruba O. N. Modeling and calculation of thermochemical characteristics of crystalline vanadium oxides under standard conditions. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Khimiya. 2017. Iss. 9, No. 4. pp. 22–28.
23. Ryabukhin A. G. Calculation of entropy of crystalline titanium oxides. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Metallurgiya. 2006. Iss. 10. pp. 3–6.
24. Ryabukhin A. G., Roshchin A. V., Roshchin V. E. Calculation of the standard heat capacity of crystalline oxides of the Fe–O–Ti system. Metally. 2006. No. 4. pp. 17–22.
25. Ryabukhin A. G., Roshchin A. V., Roshchin V. E. Entropy of crystalline titanomagnetites of the composition (FeO)x–TiO2. Metally. 2006. No. 6. pp. 8–11.
26. Moiseev G. K., Vatolin N. A., Marshuk L. A., Ilyinykh N. I. Temperature dependences of the reduced Gibbs energy of some inorganic substances. Ekaterinburg: Ural Branch of RAS, 1997. 230 p.
27. Abashidze T.D., Tsagareishvili D. Sh. Calculation of high-temperature heat capacities of ionic crystalline inorganic compounds using their standard heat capacities. Doklady AN Gruzinskoy SSR. 1982. Vol. 8, No. 1. pp. 39–45.
28. Nechaev V. V., Elmanov G. N. Thermodynamic calculations of metallurgical processes. Moscow: MIFI, 2001. 67 p.
29. Ryabukhin A. G. Heat capacity of crystalline oxides. Chelyabinsk: YuUrGU, 2004. 84 p.
30. Bazuev G. V., Korolev A. V., Golovkin B. G. Diluted ferrimagnetism of ilmenites Mn3FeTiSbO9 and Mn4FeTi2SbO12. Fizika Tverdogo Tela. 2016. Vol. 58, Iss. 7. pp. 1289–1295.
31. Moelwyn-Hughes E. A. Physical chemistry. Book 1. Moscow: IL, 1963. 519 p.
32. Shutikova M. I., Stegailov V. V. Vacancy formation energy in the cubic phase of magnetite in the framework of the DFT+U method. Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki. 2021. Vol. 160, Iss. 2. pp. 249–274.
33. Artemova E. A., Kapaev G. I., Dobrydnev S. V. Determination of thermodynamic properties of complex metal oxides by the method of comparative calculation of M. Kh. Karapetyants. Uspekhi v Khimii i Khimicheskoy Tekhnologii. 2007. Vol. 21, Iss. 9. pp. 74–77.

Language of full-text русский
Полный текст статьи Получить
Назад