Библиографический список |
1. Song J. L., Liu S. J., Jiang C. Bioleaching of chalcopyrite by thermophilic archaea. Advanced Materials Research. 2015. Vol. 1130. pp. 338–341. 2. Norris P. R., Fitzpatrick R., Santos A. L. Continuous bioreactor leaching of nickel sulfide concentrates with moderately thermophilic bacteria and archaea. Minerals Engineering. 2024. Vol. 209. DOI: 10.1016/j.mineng.2024.108615 3. Kochetkova T. V., Podosokorskaya O. A., Elcheninov A. G., Kublanov I. V. Diversity of thermophilic prokaryotes inhabiting Russian natural hot springs. Mikrobiologiya. 2022. Vol. 91, No. 1. pp. 3–31.
4. Slobodkina G. B. New thermophilic anaerobic prokaryotes using nitrogen, sulfur and iron compounds in energy metabolism: diss. for the degree of Doctor of Biological Sciences. Moscow, 2018. 256 p. 5. Masaki Y., Tsutsumi K., Hirano S., Okibe N. Microbial community profiling of the Chinoike Jigoku («Blood Pond Hell») hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1. Research in Microbiology. 2016. Vol. 167, Iss. 7. pp. 595–603. 6. Elkina Yu. A., Melnikova E. A., Melamud V. S., Bulaev A. G. Bioleaching of enargite and tennantite by moderately thermophilic acidophilic microorganisms. Mikrobiologiya. 2020. Vol. 89, No. 4. pp. 419–431. 7. Kondratieva T. F., Bulaev A. G., Muraviev M. I. Microorganisms in biogeotechnologies of sulfide ore processing. Мoscow: Nauka, 2015. 212 p. 8. Lu S., Gischkat S., Reiche M., Akob D. M., Hallberg K. B., Kusel K. Ecophysiology of Fe-cycling bacteria in acidic sediments. Applied and Environmental Microbiology. 2010. Vol. 76. pp. 8174–8183. 9. Sriaporn C., Campbell K. A., Van Kranendonk M. J., Handley K. M. Genomic adaptations enabling Acidithiobacillus distribution across wide ranging hot spring temperatures and pHs. Microbiome. 2021. Vol. 9. DOI: 10.1186/s40168-021-01090-1 10. Valdebenito-Rolack E., Ruiz-Tagle N., Abarzúa L., Aroca G., Urrutia H. Characterization of a hyperthermophilic sulphur-oxidizing biofilm produced by archaea isolated from a hot spring. Electronic Journal of Biotechnology. 2017. Vol. 25. pp. 58–63. 11. Kuzyakina T. I. Ecology and geochemical activity of microorganisms on active volcanoes and in hydrotherms. Vladivostok: Dalnauka, 2004. 250 p. 12. Furuya T., Nagumo T., Itoh T., Kanek H. A thermophilic acidophilic bacterium from hot springs. Agricultural and Biological Chemistry. 1977. Vol. 41, Iss. 9. pp. 1607–1612. 13. Chen J., Tsai H., Hsu Y., Nagarajan V., Su H., Hussain B., Hsu B. Comprehensive assessment of bacterial communities and their functional profiles in the Huang Gang Creek in the Tatun Volcano Group basin, Taiwan using 16S rRNA amplicon sequencing. Ecotoxicology and Environmental Safety. 2022. Vol. 234, Iss. 1. DOI: 10.1016/j.ecoenv.2022.113375 14. Bizzoco R. L. W., Maezato Y., Baggett J. N., Kelley S. T. Microscopic examination of acidic hot springs of Waiotapu, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research. 2005. Vol. 39. pp. 1001–1011. 15. Zavarzin G. A. Selected works. Moscow: MAKS Press, 2015. 512 p. 16. Zavarzin G. A., Karpov G. A., Gorlenko V. M., Golovacheva R. S., Gerasimenko L. M., Bonch-Osmolovskaya E. A., Orleansky V. K. Caldera microorganisms. Moscow: Nauka, 1989. 120 p. 17. Kalitina E. G., Nikulina T. V., Kharitonova N. A., Vakh E. A. Materials for studying the diversity of microorganisms in the thermal springs of Kamchatka (Russia). Proc. of the All-Russian conference with international participation «Modern problems of hydrogeology, engineering geology and hydrogeoecology of Eurasia». Tomsk, 2015. pp. 510–513. 18. Lobkova L. E., Kuzyakina T. I. Biological organisms and their role in gas hydrothermal vents of the Uzon caldera (Kamchatka). Proc. of the III International scientific conferences «Volcanism, biosphere and environmental problems». Tuapse, 2003. pp. 71–72. 19. Lebedeva E. G., Kharitonova N. A. Ecological and biochemical properties of thermophilic bacteria taken from the Dachnie hot springs of Kamchatka (Far East, Russia). Samarskiy Nauchnyi Vestnik. 2020. Vol. 9, No. 3. pp. 79–85. 20. Lebedeva E. G., Kharitonova N. A., Bragin I. V., Chelnokov G. A. Composition of cultivated bacteria of different physiological groups and their number in thermal sources Goryachaya Sopka, Kamchatka. Uspekhi Sovremennogo Estestvoznaniya. 2020. No. 12. pp. 110–116. 21. Nikulina T. V., Kalitina E. G., Kharitonova N. A., Chelnokov G. A., Vakh E. A., Grishchenko O. V. Diatoms from hot springs of the Kamchatka Peninsula (Russia). Diatoms: Fundamentals and Applications. 2019. Vol. 1. pp. 311–333. 22. Belkova N. L., Zakharova J. R., Tazaki K., Okrugin V. M., Parfenova V. V. Fe-Si biominerals in the Vilyuchinskie hot springs, Kamchatka Peninsula, Russia. International Microbiology. 2004. Vol. 7. pp. 193–198. 23. Prokofeva M. I., Kublanov I. V., Nercessian O., Tourova T. Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats. Extremophiles. 2005. Vol. 9, Iss. 6. pp. 437–448. 24. Zhao H., Zhang Y., Zhang X., Qian L., Su M., Yang Y., Zhang Y., Wang J., Kim H., Qiu G. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Minerals Engineering. 2019. Vol. 136. pp. 140–154. 25. Rodríguez Y., Ballester A., Blázquez M. L., González F., Muñoz J. A. New information on the chalcopyrite bioleaching mechanism at low and high temperature. Hydrometallurgy. 2003. Vol. 71, Iss. 1–2. pp. 47–56. 26. Clark D. A., Norris P. R. Oxidation of mineral sulphides by thermophilic microorganisms. Minerals Engineering. 1996. Vol. 9, Iss. 11. pp. 1119–1125. 27. Ríos D., Bellenberg S., Christel S., Lindblom P., GirouxT., Dopson M. Potential of single and designed mixed cultures to enhance the bioleaching of chalcopyrite by oxidation-reduction potential control. Hydrometallurgy. 2024. Vol. 224. DOI: 10.1016/j.hydromet.2023.106245 28. Liu X., Liu H., Wu W., Zhang X., Gu T., Zhu M., Tan W. Oxidative stress induced by metal ions in bioleaching of LiCoO2 by an acidophilic microbial consortium. Frontiers in Microbiology. 2020. Vol. 10. DOI: 10.3389/fmicb.2019.03058 29. Xia M., Bao P., Liu A., Wang M., Shen L., Yu R., Liu Y., Chen M., Li J., Wu X., Qiu G., Zeng W. Bioleaching of lowgrade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resources, Conservation and Recycling. 2018. Vol. 136. pp. 267–275. 30. Lavalle L., Giaveno A., Pogliani C., Donati E. Bioleaching of a polymetallic sulphide mineral by native strains of Leptospirillum ferrooxidans from Patagonia Argentina. Process Biochemistry. 2008. Vol. 43, Iss. 4. pp. 445–450. 31. Amar A., Massello F. L., Costa C. S., Castro C., Donati E. R. Bioleaching of a chalcocite-dominant copper ore from Salta, Argentina, by mesophilic and thermophilic microorganisms. Minerals. 2023. Vol. 13, Iss. 1. DOI: 10.3390/min13010052 32. Zhang S., Yang J., Dong B., Yang J., Pan H., Wang W., Yan L., Gu J. An Fe(II)-oxidizing consortium from Wudalianchi volcano spring in Northeast China for bioleaching of Cu and Ni from printed circuit boards (PCBs) with the dominance of Acidithiobacillus spp. International Biodeterioration & Biodegradation. 2022. Vol. 167. DOI: 10.1016/j.ibiod.2021.105355 33. Kioresku A. V., Musikhin V. O., Khomchenkova A. S., Balykov A. A. Study of tank bacterial-chemical leaching of the sulfide copper-nicel ores from Shanuch field (Kamchatka) in a flowing mode. Gornyi Informatsionno-analiticheskiy Byulleten'. 2015. No. 63. pp. 360–365. 34. Balykov A. A., Trukhin Yu. P. Studying of bacterialchemical leaching of sulfide copper-nickel ore in the flowing mode. Gornyi Informatsionno-analiticheskiy Byulleten'. 2014. No. S2. pp. 290–299. 35. Khainasova T. S., Kungurova V. E, Pozolotina L. A., Balykov A. A., Levenets O. O. Bioleaching of sulphide cobaltcopper-nickel ore of deposit Shanuch with use of different aboriginal microorganisms culture. Gornyi Informatsionnoanaliticheskiy Byulleten'. 2015. No. 63. pp. 297–304. |