Журналы →  Obogashchenie Rud →  2024 →  №4 →  Назад

BENEFICIATION PROCESSES
Название Prospects of bioleaching of coppernickel ores by acidophilic chemolithotrophic microorganisms from thermal springs of Kamchatka
DOI 10.17580/or.2024.04.01
Автор Averyanova V. E.
Информация об авторе

Scientific and Research Geotechnological Center of the Far Eastern Branch of the RAS (Petropavlovsk-Kamchatsky, Russia)
Averyanova V. E., Junior Researcher, Purlac@inbox.ru

Реферат

Higher temperatures can yield better metal extraction results in bacterial-chemical processing of sulfide ores or concentrates. Thermophilic archaea or moderately thermophilic bacteria participate in the oxidation of sulfide minerals at temperatures above 60 °C. Bioleaching with thermophiles can be conducted at higher temperatures, as these organisms can withstand the heat generated during the exothermic biooxidation of copper ores. These microorganisms naturally inhabit metal-rich and sulfur-rich hot springs and solfataras. The Kamchatka Peninsula and the Kuril Islands are regions of active volcanic activity and hydrothermal manifestations, with thermal outlet temperatures ranging between 15 and 96 °C and pH levels of 3.45–4.62. Hydrothermal spring waters contain carbon dioxide, hydrogen sulfide, and other reduced sulfur compounds, as well as silicon, ammonia, phosphorus, iron, manganese, zinc, and other elements. These regions could represent prospective habitats for isolating thermophilic chemolithotrophic microorganisms. Current scientific research in the hydrothermal regions of Kamchatka and the Kuril Islands focuses primarily on diatom algae and saprophytes. However, exploring iron-oxidizing and sulfur-oxidizing acidophiles from these acidic hydrothermal sources offers an opportunity to discover valuable microorganisms for the bioleaching of copper-nickel ores. This review provides general information about the thermophilic chemolithotrophic bacteria and archaea isolated from geothermal springs on the Kamchatka Peninsula and the Kuril Islands. The article describes the role of thermoacidophilic microorganisms in bioleaching.

Ключевые слова Hydrothermal springs, bioleaching, acidophilic chemolithotrophic microorganisms, thermophilic bacteria, Kamchatka, copper-nickel ores
Библиографический список

1. Song J. L., Liu S. J., Jiang C. Bioleaching of chalcopyrite by thermophilic archaea. Advanced Materials Research. 2015. Vol. 1130. pp. 338–341.
2. Norris P. R., Fitzpatrick R., Santos A. L. Continuous bioreactor leaching of nickel sulfide concentrates with moderately thermophilic bacteria and archaea. Minerals Engineering. 2024. Vol. 209. DOI: 10.1016/j.mineng.2024.108615
3. Kochetkova T. V., Podosokorskaya O. A., Elcheninov A. G., Kublanov I. V. Diversity of thermophilic prokaryotes inhabiting Russian natural hot springs. Mikrobiologiya. 2022. Vol. 91, No. 1. pp. 3–31.

4. Slobodkina G. B. New thermophilic anaerobic prokaryotes using nitrogen, sulfur and iron compounds in energy
metabolism: diss. for the degree of Doctor of Biological Sciences. Moscow, 2018. 256 p.
5. Masaki Y., Tsutsumi K., Hirano S., Okibe N. Microbial community profiling of the Chinoike Jigoku («Blood Pond Hell») hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1. Research in Microbiology. 2016. Vol. 167, Iss. 7. pp. 595–603.
6. Elkina Yu. A., Melnikova E. A., Melamud V. S., Bulaev A. G. Bioleaching of enargite and tennantite by moderately thermophilic acidophilic microorganisms. Mikrobiologiya. 2020. Vol. 89, No. 4. pp. 419–431.
7. Kondratieva T. F., Bulaev A. G., Muraviev M. I. Microorganisms in biogeotechnologies of sulfide ore processing. Мoscow: Nauka, 2015. 212 p.
8. Lu S., Gischkat S., Reiche M., Akob D. M., Hallberg K. B., Kusel K. Ecophysiology of Fe-cycling bacteria in acidic sediments. Applied and Environmental Microbiology. 2010. Vol. 76. pp. 8174–8183.
9. Sriaporn C., Campbell K. A., Van Kranendonk M. J., Handley K. M. Genomic adaptations enabling Acidithiobacillus distribution across wide ranging hot spring temperatures and pHs. Microbiome. 2021. Vol. 9. DOI: 10.1186/s40168-021-01090-1
10. Valdebenito-Rolack E., Ruiz-Tagle N., Abarzúa L., Aroca G., Urrutia H. Characterization of a hyperthermophilic sulphur-oxidizing biofilm produced by archaea isolated from a hot spring. Electronic Journal of Biotechnology. 2017. Vol. 25. pp. 58–63.
11. Kuzyakina T. I. Ecology and geochemical activity of microorganisms on active volcanoes and in hydrotherms. Vladivostok: Dalnauka, 2004. 250 p.
12. Furuya T., Nagumo T., Itoh T., Kanek H. A thermophilic acidophilic bacterium from hot springs. Agricultural and Biological Chemistry. 1977. Vol. 41, Iss. 9. pp. 1607–1612.
13. Chen J., Tsai H., Hsu Y., Nagarajan V., Su H., Hussain B., Hsu B. Comprehensive assessment of bacterial communities and their functional profiles in the Huang Gang Creek in the Tatun Volcano Group basin, Taiwan using 16S rRNA amplicon sequencing. Ecotoxicology and Environmental Safety. 2022. Vol. 234, Iss. 1. DOI: 10.1016/j.ecoenv.2022.113375
14. Bizzoco R. L. W., Maezato Y., Baggett J. N., Kelley S. T. Microscopic examination of acidic hot springs of Waiotapu, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research. 2005. Vol. 39. pp. 1001–1011.
15. Zavarzin G. A. Selected works. Moscow: MAKS Press, 2015. 512 p.
16. Zavarzin G. A., Karpov G. A., Gorlenko V. M., Golovacheva R. S., Gerasimenko L. M., Bonch-Osmolovskaya E. A., Orleansky V. K. Caldera microorganisms. Moscow: Nauka, 1989. 120 p.
17. Kalitina E. G., Nikulina T. V., Kharitonova N. A., Vakh E. A. Materials for studying the diversity of microorganisms in the thermal springs of Kamchatka (Russia). Proc. of the All-Russian conference with international participation «Modern problems of hydrogeology, engineering geology and hydrogeoecology of Eurasia». Tomsk, 2015. pp. 510–513.
18. Lobkova L. E., Kuzyakina T. I. Biological organisms and their role in gas hydrothermal vents of the Uzon caldera (Kamchatka). Proc. of the III International scientific conferences «Volcanism, biosphere and environmental problems». Tuapse, 2003. pp. 71–72.
19. Lebedeva E. G., Kharitonova N. A. Ecological and biochemical properties of thermophilic bacteria taken from the Dachnie hot springs of Kamchatka (Far East, Russia). Samarskiy Nauchnyi Vestnik. 2020. Vol. 9, No. 3. pp. 79–85.
20. Lebedeva E. G., Kharitonova N. A., Bragin I. V., Chelnokov G. A. Composition of cultivated bacteria of different physiological groups and their number in thermal sources Goryachaya Sopka, Kamchatka. Uspekhi Sovremennogo Estestvoznaniya. 2020. No. 12. pp. 110–116.
21. Nikulina T. V., Kalitina E. G., Kharitonova N. A., Chelnokov G. A., Vakh E. A., Grishchenko O. V. Diatoms from hot springs of the Kamchatka Peninsula (Russia). Diatoms: Fundamentals and Applications. 2019. Vol. 1. pp. 311–333.
22. Belkova N. L., Zakharova J. R., Tazaki K., Okrugin V. M., Parfenova V. V. Fe-Si biominerals in the Vilyuchinskie hot springs, Kamchatka Peninsula, Russia. International Microbiology. 2004. Vol. 7. pp. 193–198.
23. Prokofeva M. I., Kublanov I. V., Nercessian O., Tourova T. Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats. Extremophiles. 2005. Vol. 9, Iss. 6. pp. 437–448.
24. Zhao H., Zhang Y., Zhang X., Qian L., Su M., Yang Y., Zhang Y., Wang J., Kim H., Qiu G. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Minerals Engineering. 2019. Vol. 136. pp. 140–154.
25. Rodríguez Y., Ballester A., Blázquez M. L., González F., Muñoz J. A. New information on the chalcopyrite bioleaching mechanism at low and high temperature. Hydrometallurgy. 2003. Vol. 71, Iss. 1–2. pp. 47–56.
26. Clark D. A., Norris P. R. Oxidation of mineral sulphides by thermophilic microorganisms. Minerals Engineering. 1996. Vol. 9, Iss. 11. pp. 1119–1125.
27. Ríos D., Bellenberg S., Christel S., Lindblom P., GirouxT., Dopson M. Potential of single and designed mixed cultures to enhance the bioleaching of chalcopyrite by oxidation-reduction potential control. Hydrometallurgy. 2024. Vol. 224. DOI: 10.1016/j.hydromet.2023.106245
28. Liu X., Liu H., Wu W., Zhang X., Gu T., Zhu M., Tan W. Oxidative stress induced by metal ions in bioleaching of LiCoO2 by an acidophilic microbial consortium. Frontiers in Microbiology. 2020. Vol. 10. DOI: 10.3389/fmicb.2019.03058
29. Xia M., Bao P., Liu A., Wang M., Shen L., Yu R., Liu Y., Chen M., Li J., Wu X., Qiu G., Zeng W. Bioleaching of lowgrade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resources, Conservation and Recycling. 2018. Vol. 136. pp. 267–275.
30. Lavalle L., Giaveno A., Pogliani C., Donati E. Bioleaching of a polymetallic sulphide mineral by native strains of Leptospirillum ferrooxidans from Patagonia Argentina. Process Biochemistry. 2008. Vol. 43, Iss. 4. pp. 445–450.
31. Amar A., Massello F. L., Costa C. S., Castro C., Donati E. R. Bioleaching of a chalcocite-dominant copper ore from Salta, Argentina, by mesophilic and thermophilic microorganisms. Minerals. 2023. Vol. 13, Iss. 1. DOI: 10.3390/min13010052
32. Zhang S., Yang J., Dong B., Yang J., Pan H., Wang W., Yan L., Gu J. An Fe(II)-oxidizing consortium from Wudalianchi volcano spring in Northeast China for bioleaching of Cu and Ni from printed circuit boards (PCBs) with the dominance of Acidithiobacillus spp. International Biodeterioration & Biodegradation. 2022. Vol. 167. DOI: 10.1016/j.ibiod.2021.105355
33. Kioresku A. V., Musikhin V. O., Khomchenkova A. S., Balykov A. A. Study of tank bacterial-chemical leaching of the sulfide copper-nicel ores from Shanuch field (Kamchatka) in a flowing mode. Gornyi Informatsionno-analiticheskiy Byulleten'. 2015. No. 63. pp. 360–365.
34. Balykov A. A., Trukhin Yu. P. Studying of bacterialchemical leaching of sulfide copper-nickel ore in the flowing mode. Gornyi Informatsionno-analiticheskiy Byulleten'. 2014. No. S2. pp. 290–299.
35. Khainasova T. S., Kungurova V. E, Pozolotina L. A., Balykov A. A., Levenets O. O. Bioleaching of sulphide cobaltcopper-nickel ore of deposit Shanuch with use of different aboriginal microorganisms culture. Gornyi Informatsionnoanaliticheskiy Byulleten'. 2015. No. 63. pp. 297–304.

Language of full-text русский
Полный текст статьи Получить
Назад