Journals →  Obogashchenie Rud →  2024 →  #4 →  Back

SECONDARY RAW MATERIAL PROCESSING
ArticleName Regeneration and recycling of lime component in complex processing of kaolin raw materials
DOI 10.17580/or.2024.04.05
ArticleAuthor Brichkin V. N., Kurtenkov R. V., Maksimova R. I. Bormotov I. S.
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (Saint Petersburg, Russia)

Brichkin V. N., Director of Institute of Scientific Competences, Doctor of Engineering Sciences, Professor, Brichkin_VN@pers.spmi.ru
Kurtenkov R. V., Associate Professor, PhD in Engineering Sciences, Kurtenkov_RV@pers.spmi.ru
Maksimova R. I., Postgraduate Student, Maksimova_RI@pers.spmi.ru
Bormotov I. S., Postgraduate Student, Bormotov_IS@pers.spmi.ru

Abstract

Technological independence of the Russian aluminum industry has historically been constrained by compromises related to the domestic raw material base, which suffers from a shortage of high-quality bauxite and a reliance on low-quality aluminum raw materials. Several key issues remain to this day. One major ongoing challenge is improving the utilization efficiency of waste sludge, a by-product of alumina production generated during the processing of both traditional and low-quality aluminum raw materials. An advanced strategy for the utilization of silicate-calcium sludge from alumina production has been developed and implemented. This strategy specifically applies to processing nepheline-based raw materials and enables the production of a variety of by-products. There are, however, certain economic limitations that impact the production and market demand for these by-products. These financial constraints necessitate the development and optimization of technologies that can effectively regenerate and recycle the lime component present in the silicatecalcium sludge with the goal to facilitate the processing of different types of aluminosilicate raw materials. Relevant thermodynamic calculations indicate that carbon dioxide conversion of calcium orthosilicate is possible under atmospheric conditions, resulting in the release of lime and silicate components, regardless of the specific polymorphic modifications of orthosilicate and calcium carbonate involved. It has been established that calcium orthosilicate tends to become passivated by the products of chemical interactions. However, conditions for the conversion of γ-2CaO·SiO2, leading to the formation of aragonite and observed during the processing of kaolinite raw materials, have been shown to be more favorable. The study theoretically substantiates and experimentally confirms the influence of the degree of carbon dioxide conversion of calcium orthosilicate on the formulation of a two-component raw Portland cement mixture. It also demonstrates the potential for a significant reduction (up to 6.6 %) in the proportion of the sludge flow required to regenerate the lime component.

keywords Aluminosilicate raw materials, waste disposal, calcium silicate sludge, Portland cement, calcium orthosilicate, carbon dioxide conversion, regeneration and recycling, lime component
References

1. Litvinenko V. S., Tsvetkov P. S., Molodtsov K. V. The social and market mechanism of sustainable development of public companies in the mineral resource sector. Eurasian Mining. 2020. No. 1. pp. 36–41.
2. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Zapiski Gornogo Instituta. 2023. Vol. 259. pp. 95–111.
3. Nevskaya M. A., Raikhlin S. M., Vinogradova V. V., Belyaev V. V., Khaikin M. M. A study of factors affecting national energy efficiency. Energies. 2023. Vol. 16. DOI: 10.3390/en16135170
4. Alekseev A. I. Complex processing of apatite-nepheline ores based on the creation of closed-loop process flow sheets. Zapiski Gornogo Instituta. 2015. Vol. 215. pp. 75–83.
5. Antropova I. G., Khomoksonova D. P. Existing and promising deep processing technologies for refractory potassium-containing aluminosilicate raw materials. Obogashchenie Rud. 2021. No. 6. pp. 3–8.
6. Arsentyev V. A., Gerasimov A. M., Mezenin A. O. Kaolines beneficiation technology study with application of hydrothermal modification. Obogashchenie Rud. 2017. No. 2. pp. 3–9.
7. Ponomarev V. D. Chemistry and technology of alumina. Selected works. Alma-Ata: Nauka, 1973. 391 p.
8. Layner A. I., Eremin N. I., Layner Yu. A., Pevzner I. Z. Alumina production. Moscow: Metallurgiya, 1978. 344 p.
9. Sazhin V. S. New hydrochemical methods of obtaining alumina. Kiev: Naukova Dumka, 1979. 199 p.
10. Vigneshwaran S., Uthayakumar M., Arumugaprabu V. Development and sustainability of industrial waste-based red mud hybrid composites. Journal of Cleaner Production. 2019. Vol. 230. pp. 862-868.
11. Khairul M. A., Zanganeh J., Moghtadery B. The composition, recycling and utilisation of Bayer red mud. Resources Conservation and Recycling. 2019. Vol. 141. pp. 483–498.
12. Wang Sh., Jin H., Deng Y., Xiao Y. Comprehensive utilization status of red mud in China: A critical review. Journal of Cleaner Production. 2020. Vol. 289, Iss. 11. pp. 125–136.
13. Piirainen V. Yu., Barinkova A. A., Starovoytov V. N., Barinkov V. M. Deactivation of red mud by primary aluminum production wastes. Materials Science Forum. 2021. Vol. 1040. pp. 109–116.
14. Zubkova O. S., Pyagay I. N., Pankratieva K. A., Toropchina M. A. Development of composition and study of sorbent properties based on saponite. Zapiski Gornogo Instituta. 2023. Vol. 259, pp. 21–29.
15. Litvinova T. E., Suchkov D. V. Lightweight ashbased concrete production as a promising way of technogenic product utilization (on the example of sewage treatment waste). Zapiski Gornogo Instituta. 2023. Vol. 264. pp. 906–918.
16. Pyagay I. N., Kremcheev E. A., Pasechnik L. A., Yatsenko S. P. Carbonization processing of bauxite residue as an alternative rare metal recovery process. Tsvetnye Metally. 2020. No. 10. pp. 56–63.
17. Ruziev N. R., Iskandarova M. I., Mironyuk N. A., Makhsudova N. D. A resource-saving process for obtaining sulfoferrite clinkers and the properties of cements made with them involving the use of metallurgical waste. Tsvetnye Metally. 2021. No. 11. pp. 23–31.
18. Gerasimov A. M., Ustinov I. D., Zyryanova O. V. Use of clay-containing waste as pozzolanic additives. Zapiski Gornogo Instituta. 2023. Vol. 260. pp. 313–320.
19. Pilyaeva O. V., Shepelev I. I., Zhukov E. I., Sakhachev A. Yu., Golovnykh N. V. Extraction of valuable components in the process of recycling of technogenic materials of alumina production. Ekologiya i Promyshlennost' Rossii. 2024. No. 4. pp. 15–19.
20. Dubrovin D. F., Sharonova O. M., Dobrosmislov S. S., Anshits A. G. Effect of replacing cement with high-calcium fly ash on the properties of cementing slurry. Ekologiya i Promyshlennost' Rossii. 2023. No. 6. pp. 43–49.
21. Delitsyn L. M., Kulumbegov R. V., Popel O. S., Borodina T. I., Sulman M. G., Kosivtsov Yu. Yu. Belite sludges from coal-fired power plant ash. Ekologiya i Promyshlennost' Rossii. 2022. No. 11. pp. 20–26.
22. Arsentiev V. A., Gerasimov A. M. Use of claycontaining tailings in geopolymer production. Tsvetnye Metally. 2021. No. 11. pp. 58–62.
23. Al-Ajeel A. A., Abdullah S. Z., Muslim W. A., Abdulkhader M. Q., Al-Halbosy M. K., Al-Jumely F. A. Extraction of alumina from Iraqi colored kaolin by lime-sinter process. Iraqi Bulletin of Geology and Mining. 2014. Vol. 10, No. 3. pp. 109–117.
24. Kotova О. B., Ustyugov V. А., Shiyong Sun, Ponaryadov А. V. Mullite production: phase transformations of kaolinite, thermodynamics of the process. Zapiski Gornogo Instituta. 2022. Vol. 254. pp. 129-135.
25. Sizyakov V. M. Chemical and technological mechanisms of a alkaline aluminum silicates sintering and a hydrochemical sinter processing. Zapiski Gornogo Instituta. 2016. Vol. 217. pp. 102–112.
26. Tian Y., Pan X., Yu H., Han Y., Tu G., Bi S. An improved lime sinter process to produce Al2O3 from lowgrade Al-containing resources. Light Metals. Ed. Williams E. Springer Cham, 2016. pp. 5–9.
27. Lebedev A. B., Bazhin V. Yu., Zhadovskiy I. T. Physico-chemical process behind self-disintegration of sinter resulting in the production of aluminium oxide and calcium γ-ortosilicate. Tsvetnye Metally. 2024. Vol. 2. pp. 80–86.
28. Sizyakov V. M., Korneev V. I., Andreev V. V. Improving the quality of alumina and by-products in the complex processing of nephelines. Moscow: Metallurgiya, 1986. 118 p.
29. Alekseev A. I., Kononchuk O. O., Goncharova M. V., Hippmann S., Bertau M. Recovery of CaCO3 from the nepheline sludge of alumina production. Chemie–Ingenieur–Technik. 2019. No. 4. DOI: 10.1002/cite.201800159
30. Panov A., Vinogradov S., Engalychev S. Evolutional development of alkaline aluminosilicates processing technology. Light Metals. Ed. Ratvik A. P. Springer Cham, 2017. pp. 9–16.
31. Eldeeb A. B., Brichkin V. N., Kurtenkov R. V., Bormotov I. S. Study of the peculiarities of the leaching process for self-crumbling limesstone-kaolin cakes. Obogashchenie Rud. 2021. No. 2. pp. 27–32.
32. Sakhachev A. Yu., Shepelev I. I., Zhukov E. I., Nemchinova N. V., Dashkevich R. Ya., Golovnykh N. V., Zhizhaev A. M., Alexandrov A. V. Prospects for the use of technogenic raw materials additives in alumina production. Non-ferrous metals and minerals. Proc. of the X International congress, Krasnoyarsk, September 10–14, 2018. pp. 136–140.
33. URL: https://chemhelp.ru/handbook/tables/thermodynamic_data/?ysclid=lywya8wpz9846699625 (accessed: 20.06.2024).
34. Yamnova N. A., Egorov-Tismenko Yu. K., Gobechiya E. R., Zadov A. E., Gazeev V. M. New data on polymorphic modifications of anhydrous bicalcium orthosilicate. New data on minerals. Мoscow, 2008. Iss. 43. pp. 54–71.
35. Van Santen R. A. The Ostwald step rul. Journal of Physical Chemistry. 1984. Vol. 88, Iss. 24. pp. 5768–5769.1. Litvinenko V. S., Tsvetkov P. S., Molodtsov K. V. The social and market mechanism of sustainable development of public companies in the mineral resource sector. Eurasian Mining. 2020. No. 1. pp. 36–41.
2. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Zapiski Gornogo Instituta. 2023. Vol. 259. pp. 95–111.
3. Nevskaya M. A., Raikhlin S. M., Vinogradova V. V., Belyaev V. V., Khaikin M. M. A study of factors affecting national energy efficiency. Energies. 2023. Vol. 16. DOI: 10.3390/en16135170
4. Alekseev A. I. Complex processing of apatite-nepheline ores based on the creation of closed-loop process flow sheets. Zapiski Gornogo Instituta. 2015. Vol. 215. pp. 75–83.
5. Antropova I. G., Khomoksonova D. P. Existing and promising deep processing technologies for refractory potassium-containing aluminosilicate raw materials. Obogashchenie Rud. 2021. No. 6. pp. 3–8.
6. Arsentyev V. A., Gerasimov A. M., Mezenin A. O. Kaolines beneficiation technology study with application of hydrothermal modification. Obogashchenie Rud. 2017. No. 2. pp. 3–9.
7. Ponomarev V. D. Chemistry and technology of alumina. Selected works. Alma-Ata: Nauka, 1973. 391 p.
8. Layner A. I., Eremin N. I., Layner Yu. A., Pevzner I. Z. Alumina production. Moscow: Metallurgiya, 1978. 344 p.
9. Sazhin V. S. New hydrochemical methods of obtaining alumina. Kiev: Naukova Dumka, 1979. 199 p.
10. Vigneshwaran S., Uthayakumar M., Arumugaprabu V. Development and sustainability of industrial waste-based red mud hybrid composites. Journal of Cleaner Production. 2019. Vol. 230. pp. 862-868.
11. Khairul M. A., Zanganeh J., Moghtadery B. The composition, recycling and utilisation of Bayer red mud. Resources Conservation and Recycling. 2019. Vol. 141. pp. 483–498.
12. Wang Sh., Jin H., Deng Y., Xiao Y. Comprehensive utilization status of red mud in China: A critical review. Journal of Cleaner Production. 2020. Vol. 289, Iss. 11. pp. 125–136.
13. Piirainen V. Yu., Barinkova A. A., Starovoytov V. N., Barinkov V. M. Deactivation of red mud by primary aluminum production wastes. Materials Science Forum. 2021. Vol. 1040. pp. 109–116.
14. Zubkova O. S., Pyagay I. N., Pankratieva K. A., Toropchina M. A. Development of composition and study of sorbent properties based on saponite. Zapiski Gornogo Instituta. 2023. Vol. 259, pp. 21–29.
15. Litvinova T. E., Suchkov D. V. Lightweight ashbased concrete production as a promising way of technogenic product utilization (on the example of sewage treatment waste). Zapiski Gornogo Instituta. 2023. Vol. 264. pp. 906–918.
16. Pyagay I. N., Kremcheev E. A., Pasechnik L. A., Yatsenko S. P. Carbonization processing of bauxite residue as an alternative rare metal recovery process. Tsvetnye Metally. 2020. No. 10. pp. 56–63.
17. Ruziev N. R., Iskandarova M. I., Mironyuk N. A., Makhsudova N. D. A resource-saving process for obtaining sulfoferrite clinkers and the properties of cements made with them involving the use of metallurgical waste. Tsvetnye Metally. 2021. No. 11. pp. 23–31.
18. Gerasimov A. M., Ustinov I. D., Zyryanova O. V. Use of clay-containing waste as pozzolanic additives. Zapiski Gornogo Instituta. 2023. Vol. 260. pp. 313–320.
19. Pilyaeva O. V., Shepelev I. I., Zhukov E. I., Sakhachev A. Yu., Golovnykh N. V. Extraction of valuable components in the process of recycling of technogenic materials of alumina production. Ekologiya i Promyshlennost' Rossii. 2024. No. 4. pp. 15–19.
20. Dubrovin D. F., Sharonova O. M., Dobrosmislov S. S., Anshits A. G. Effect of replacing cement with high-calcium fly ash on the properties of cementing slurry. Ekologiya i Promyshlennost' Rossii. 2023. No. 6. pp. 43–49.
21. Delitsyn L. M., Kulumbegov R. V., Popel O. S., Borodina T. I., Sulman M. G., Kosivtsov Yu. Yu. Belite sludges from coal-fired power plant ash. Ekologiya i Promyshlennost' Rossii. 2022. No. 11. pp. 20–26.
22. Arsentiev V. A., Gerasimov A. M. Use of claycontaining tailings in geopolymer production. Tsvetnye Metally. 2021. No. 11. pp. 58–62.
23. Al-Ajeel A. A., Abdullah S. Z., Muslim W. A., Abdulkhader M. Q., Al-Halbosy M. K., Al-Jumely F. A. Extraction of alumina from Iraqi colored kaolin by lime-sinter process. Iraqi Bulletin of Geology and Mining. 2014. Vol. 10, No. 3. pp. 109–117.
24. Kotova О. B., Ustyugov V. А., Shiyong Sun, Ponaryadov А. V. Mullite production: phase transformations of kaolinite, thermodynamics of the process. Zapiski Gornogo Instituta. 2022. Vol. 254. pp. 129-135.
25. Sizyakov V. M. Chemical and technological mechanisms of a alkaline aluminum silicates sintering and a hydrochemical sinter processing. Zapiski Gornogo Instituta. 2016. Vol. 217. pp. 102–112.
26. Tian Y., Pan X., Yu H., Han Y., Tu G., Bi S. An improved lime sinter process to produce Al2O3 from lowgrade Al-containing resources. Light Metals. Ed. Williams E. Springer Cham, 2016. pp. 5–9.
27. Lebedev A. B., Bazhin V. Yu., Zhadovskiy I. T. Physico-chemical process behind self-disintegration of sinter resulting in the production of aluminium oxide and calcium γ-ortosilicate. Tsvetnye Metally. 2024. Vol. 2. pp. 80–86.
28. Sizyakov V. M., Korneev V. I., Andreev V. V. Improving the quality of alumina and by-products in the complex processing of nephelines. Moscow: Metallurgiya, 1986. 118 p.
29. Alekseev A. I., Kononchuk O. O., Goncharova M. V., Hippmann S., Bertau M. Recovery of CaCO3 from the nepheline sludge of alumina production. Chemie–Ingenieur–Technik. 2019. No. 4. DOI: 10.1002/cite.201800159
30. Panov A., Vinogradov S., Engalychev S. Evolutional development of alkaline aluminosilicates processing technology. Light Metals. Ed. Ratvik A. P. Springer Cham, 2017. pp. 9–16.
31. Eldeeb A. B., Brichkin V. N., Kurtenkov R. V., Bormotov I. S. Study of the peculiarities of the leaching process for self-crumbling limesstone-kaolin cakes. Obogashchenie Rud. 2021. No. 2. pp. 27–32.
32. Sakhachev A. Yu., Shepelev I. I., Zhukov E. I., Nemchinova N. V., Dashkevich R. Ya., Golovnykh N. V., Zhizhaev A. M., Alexandrov A. V. Prospects for the use of technogenic raw materials additives in alumina production. Non-ferrous metals and minerals. Proc. of the X International congress, Krasnoyarsk, September 10–14, 2018. pp. 136–140.
33. URL: https://chemhelp.ru/handbook/tables/thermodynamic_data/?ysclid=lywya8wpz9846699625 (accessed: 20.06.2024).
34. Yamnova N. A., Egorov-Tismenko Yu. K., Gobechiya E. R., Zadov A. E., Gazeev V. M. New data on polymorphic modifications of anhydrous bicalcium orthosilicate. New data on minerals. Мoscow, 2008. Iss. 43. pp. 54–71.
35. Van Santen R. A. The Ostwald step rul. Journal of Physical Chemistry. 1984. Vol. 88, Iss. 24. pp. 5768–5769.

Language of full-text russian
Full content Buy
Back