Journals →  Obogashchenie Rud →  2024 →  #4 →  Back

ANALYTICAL METHODS IN BENEFICIATION PROCESSES
ArticleName Thermodynamic analysis of chemical processing of iron-titanium ores: calculation of thermochemical constants
DOI 10.17580/or.2024.04.07
ArticleAuthor Ponaryadov A. V., Kotova O. B., Silaev V. I., Ustyugov V. A.
ArticleAuthorData

Institute of Geology, Komi Scientific Center, Ural Branch of RAS (Syktyvkar, Russia)

Ponaryadov A. V., Postgraduate Student, alex401@rambler.ru
Kotova O. B., Chief Researcher, Doctor of Geological and Mineralogical Sciences, kotova@geo.komisc.ru
Silaev V. I., Chief Researcher, Doctor of Geological and Mineralogical Sciences, silaev@geo.komisc.ru

 

Syktyvkar State University named after Pitirim Sorokin (Syktyvkar, Russia)

Ustyugov V. A., Associate Professor, Candidate of Physical and Mathematical Sciences, ustyugov@syktsu.ru

Abstract

The thermodynamic analysis method of chemical processing for refractory iron-titanium ores is increasingly utilized to enhance the efficiency of experimental research by reducing energy and resource consumption. Despite its growing application, the current methods for calculating the thermochemical characteristics of compounds containing many critically important metals need further refinement. This research addresses this issue by introducing improvements to the methods used for calculating thermochemical constants for irontitanium and other oxides. The study focuses on commonly found minerals such as ilmenite, magnetite, perovskite, and pseudobrookite under standard conditions. These improvements provide a solid foundation for thermodynamic analysis, specifically to identify potential phase transformations that may occur during the chemical processing of complex ores. To achieve this, a hyperbolic model was employed, which takes into account the detailed internal structure of the compounds, including the type of crystal lattice and the number of occupied positions. Using this model, the study calculated the heat capacity and entropy for compounds within the Fe–Ti–O system and developed a curve that shows how heat capacity varies with temperature. Moreover, a new method was proposed for calculating the standard enthalpy of formation of these oxides. These refined calculation methods offer more accurate empirical data for iron-titanium and other oxides and can predict the heat capacity and standard enthalpy of formation for less well-studied compounds. When comparing the new calculations to reference data, the results showed good convergence, with relative errors for heat capacity, entropy, and standard enthalpy of formation at about 1.4 %. This accuracy is significantly better than that of the traditional additive methods, showing a 20-fold improvement. The calculation methods proposed in this research provide a straightforward and reliable means of thermodynamic analysis for understanding phase transformations. They have the potential to significantly advance energy- and resource-efficient technologies in mineral processing, applicable to both natural exogenous-hypergene environments and the processing of refractory iron-titanium ores.
This research was conducted under the State Assignment of the Institute of Geology of the Federal Research Center Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences.

keywords Complex ores, thermodynamic analysis, phase transformations, iron-titanium oxides, heat capacity, entropy, enthalpy
References

1. State report on the state and use of mineral resources of the Russian Federation in 2021. Moscow: VIMS, 2022. 626 p.
2. Bykhovskiy L. Z., Arkhipova N. A. Strategic rare metal supply in Russia: Current state and future prospects. Gornyi Zhurnal. 2017. No. 7. pp. 4–10.
3. Kotova O. B., Ozhogina E. G., Ponaryadov A. V. Technological mineralogy: Development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit). Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 632-641.
4. Pirogov B. I., Ozhogina E. G. Principles and methods of technological mineralogy in processing of solid mineral resources. Vestnik Geonauk. 2020. Vol. 2. pp. 11–14.
5. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russian Collection, 2020. 374 p.
6. Nokhrina O. I., Rozhikhina I. D., Rybenko I. A., Golodova M. A., Izrailskii A. O. Hydrometallurgical enrichment of polymetallic and ferromanganese ore. Izvestiya Vuzov. Chernaya Metallurgiya. 2021. Vol. 64, No. 4. pp. 273–281.
7. Yuryev B. P., Goltsev V. A., Dudko V. A. Study of thermochemical processes during firing of siderite ores. Stal'. 2023. Vol. 11. pp. 2–7.
8. Souza R., Queiroz C., Brant J., Brocchi E. Pyrometallurgical processing of a low copper content concentrate based on a thermodynamic assessment. Minerals Engineering. 2019. Vol. 130. pp. 156–164.
9. Mazukhina S., Krasavtseva E., Makarov D., Maksimova V. Thermodynamic modeling of hypergene processes in loparite ore concentration tailings. Minerals. 2021. Vol. 11, Iss. 9. DOI: 10.3390/min11090996
10. Kotova O. B., Ustyugov V. A., Sun S., Ponaryadov A. V. Mullite production: phase transformations of kaolinite, thermodynamics of the process. Zapiski Gornogo Instituta. 2022. Vol. 254. pp. 129–135.
11. Akberdin A., Kim A. S., Sultangaziyev R., Orlov A. S. Thermodynamic modeling of the process of processing copper ores into matte using borate ores. Heliyon. 2024. DOI: 10.2139/ssrn.4737514
12. Silva A. M., Souza R. F. M., Aguilera L. S., de Campos J. B., Brocchi E. A. Upgrade of titanium content in a vanadiferrous titanomagnetite waste: Design of a roastleach route based on thermodynamics simulations. Minerals Engineering. 2022. Vol. 179. DOI: 10.1016/j.mineng.2022.107460
13. Lei Y., Sun F., Liu X., Zhao Z. Understanding the wet decomposition processes of tungsten ore: Phase, thermodynamics and kinetics. Hydrometallurgy. 2022. Vol. 213. DOI: 10.1016/j.hydromet.2022.105928

14. Ponaryadov A. V. Minerals and processing features of ilmenite-leucoxene ores of Pizhemskoe deposit, Middle Timan. Vestnik Instituta Geologii Komi NTs UrO RAS. 2017. No. 1. pp. 29–36.
15. Kuzmin M. P., Begunov A. I. Approximate calculations of thermodynamic characteristics of intermetallic compounds based on aluminum. iPolytech Journal. 2013. Vol. 72, No. 1. pp. 98–101.
16. Landau L. D., Lifshitz E. M. Statistical physics. Part 1. Moscow: Physmatlit, 2005. 616 p.
17. Zaitseva O. V., Trofimov E. A. Thermodynamic model for describing high-entropy oxide phases with the M-type hexaferrite structure. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Khimiya. 2022. Iss. 14, No. 3. pp. 109–118.
18. Li X., Yang L., Zhou Q., Qi T., Liu G., Peng Z. A split-combination method for estimating the thermodynamic properties (Go and Ho) of multicomponent minerals. Applied Clay Science. 2020. Vol. 185. DOI: 10.1016/j.clay.2019.105406
19. Uspenskaya I. A., Ivanov A. S., Konstantinova N. M., Kutsenok I. B. Ways of estimating the heat capacity of crystalline phases. Zhurnal Fizicheskoy Khimii. 2022. Vol. 96, No. 9. pp. 1302–1310.
20. Vanhinsberg V. J., Vriend S. P., Schumacher J. C. A new method to calculate end-member thermodynamic properties of minerals from their constituent polyhedra I: enthalpy, entropy and molar volume. Journal of Metamorphic Geology. 2005. Vol. 23. pp. 165–179.
21. Ryabukhin A. G. Mathematical models for calculating thermal constants. Izvestiya Chelyabinskogo Nauchnogo Tsentra UrO RAS. 2007. Iss. 1. pp. 24–36.
22. Nikiforova A. K., Gruba O. N. Modeling and calculation of thermochemical characteristics of crystalline vanadium oxides under standard conditions. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Khimiya. 2017. Iss. 9, No. 4. pp. 22–28.
23. Ryabukhin A. G. Calculation of entropy of crystalline titanium oxides. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Metallurgiya. 2006. Iss. 10. pp. 3–6.
24. Ryabukhin A. G., Roshchin A. V., Roshchin V. E. Calculation of the standard heat capacity of crystalline oxides of the Fe–O–Ti system. Metally. 2006. No. 4. pp. 17–22.
25. Ryabukhin A. G., Roshchin A. V., Roshchin V. E. Entropy of crystalline titanomagnetites of the composition (FeO)x–TiO2. Metally. 2006. No. 6. pp. 8–11.
26. Moiseev G. K., Vatolin N. A., Marshuk L. A., Ilyinykh N. I. Temperature dependences of the reduced Gibbs energy of some inorganic substances. Ekaterinburg: Ural Branch of RAS, 1997. 230 p.
27. Abashidze T.D., Tsagareishvili D. Sh. Calculation of high-temperature heat capacities of ionic crystalline inorganic compounds using their standard heat capacities. Doklady AN Gruzinskoy SSR. 1982. Vol. 8, No. 1. pp. 39–45.
28. Nechaev V. V., Elmanov G. N. Thermodynamic calculations of metallurgical processes. Moscow: MIFI, 2001. 67 p.
29. Ryabukhin A. G. Heat capacity of crystalline oxides. Chelyabinsk: YuUrGU, 2004. 84 p.
30. Bazuev G. V., Korolev A. V., Golovkin B. G. Diluted ferrimagnetism of ilmenites Mn3FeTiSbO9 and Mn4FeTi2SbO12. Fizika Tverdogo Tela. 2016. Vol. 58, Iss. 7. pp. 1289–1295.
31. Moelwyn-Hughes E. A. Physical chemistry. Book 1. Moscow: IL, 1963. 519 p.
32. Shutikova M. I., Stegailov V. V. Vacancy formation energy in the cubic phase of magnetite in the framework of the DFT+U method. Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki. 2021. Vol. 160, Iss. 2. pp. 249–274.
33. Artemova E. A., Kapaev G. I., Dobrydnev S. V. Determination of thermodynamic properties of complex metal oxides by the method of comparative calculation of M. Kh. Karapetyants. Uspekhi v Khimii i Khimicheskoy Tekhnologii. 2007. Vol. 21, Iss. 9. pp. 74–77.

Language of full-text russian
Full content Buy
Back