Журналы →  Черные металлы →  2024 →  №9 →  Назад

Конструктивно-технологическая прочность и работоспособность материалов
Название Расчетно-экспериментальные исследования остаточного ресурса длительной прочности легированных жаропрочных сталей
DOI 10.17580/chm.2024.09.07
Автор О. Ю. Ганзуленко, А. В. Емельянов, Ю. Э. Хангу
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия

О. Ю. Ганзуленко, доцент кафедры материаловедения и технологии художественных изделий, канд. техн. наук, эл. почта: Ganzulenko_OYu@pers.spmi.ru

 

Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия
А. В. Емельянов, заведующий научно-испытательной лабораторией конструкционных и строительных материалов «Политехтест КСМ», эл. почта: a.emelianov@onti.spbstu.ru

Ю. Э. Хангу, ведущий инженер научно-испытательной лаборатории конструкционных и строительных материалов «Политехтест КСМ», канд. техн. наук, эл. почта: khangu2010@yandex.ru

Реферат

Приведены фундаментальные исследования материала для изготовления энергетического и химического оборудования с целью обеспечения надежности его работы и длительной эксплуатации в условиях высоких температур и коррозионно-агрессивных сред. Представлена методика расчета остаточного ресурса длительной прочности жаропрочных сталей после их продолжительной эксплуатации при повышенных температурах для прогнозирования и определения возможности их дальнейшей работы после выработки ресурса материала без дополнительной обработки. Для стали 10Х2М, применяемой для производства промышленных емкостей, работающих под давлением при высоких температурах, приведены расчеты с использованием экспресс-метода, проведены испытания на длительную прочность данной марки стали после ее эксплуатации, выполнен анализ полученных экспериментальных и расчетных данных. Представлены исследования микроструктуры методом оптической металлографии, проведена оценка микроповрежденности металла и степени деградации структуры образцов отработанного материала и образцов после разрушения при испытаниях на длительную прочность отработанной стали. Проанализировано изменение структуры, характер зависимости длительной прочности отработанной стали, рассмотрены процессы, происходящие при повторной эксплуатации. Анализ полученных данных свидетельствует о восстановлении характеристик зависимости длительной прочности при невысоких нагрузках и повышенных температурах эксплуатации, даны рекомендации по возможности дальнейшего использования элементов энергетического и химического оборудования. В процессе выполнения работы изучена возможность использования статистического метода изучения данных о нагрузках, воздействующих на металл при высоких температурах, которая позволяет определить негативные последствия от условий эксплуатации, увеличить точность прогнозирования срока службы элементов конструкций, а также использовать полученные данные для их повторной эксплуатации. Возможность применения предложенных расчетов по определению остаточного ресурса сталей подтверждена результатами металлографических исследований.

Ключевые слова Остаточный ресурс, поврежденность металла, длительная прочность, поры ползучести, долговечность, микроструктура
Библиографический список

1. Azmetov Kh. A., Pavlova Z. Kh., Azmetov Kh. Kh. Ensuring reliability and safety of main oil pipelines. Problemy sbora, podgotovki i transportirovki nefti i nefteproduktov. 2019. No. 5. pp. 83–94.
2. Shammazov I. A., Batyrov A. M., Sidorkin D. I., Van Nguyen T. Study of the effect of cutting frozen soils on the supports of above-ground trunk pipelines. Appl. Sci. 2023. Vol. 13. 3139. DOI: 10.3390/app13053139
3. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to rill corrosion. Zapiski Gornogo instituta. 2021. Vol. 252. pp. 854–860. DOI: 10.31897/PMI.2021.6.7
4. Perveitalov O. G., Nosov V. V., Borovkov A. I., Khanukhov K. M. et al. Calculation of durability and fatigue life parameters of structural alloys using a multilevel model of acoustic emission pulse flow. Metals. 2023. Vol. 13, Iss. 1.4. DOI: 10.3390/met13010004
5. Murmansky B. E., Aronson K. E., Brodov Yu. M. The influence of damageability of equipment of technological subsystems on functional failures of steam turbine units. Nadezhnost i bezopasnost energetiki. 2017. No. 10 (4). pp. 322–329. DOI: 10.24223/1999-5555-2017-10-4-322-329
6. Onishkov N. P., Korotkin V. I. On the assessment of contact fatigue life of chemically-thermally strengthened gear wheels. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. Vol. 17. No. 3. pp. 5–13. DOI: 10.23947/1992-5980-2017-17-3-5-13
7. Ababkov N. V. Identification of zones of stable localization of deformations by methods of non-destructive testing in structural and heat-resistant steels. Innovations in mechanical engineering (InMash-2020): proceedings of the XI International scientific and practical conference, Biysk, October 22–23, 2020. Biysk : Izdatelstvo Altayskogo gosudarstvennogo tekhnicheskogo universiteta imeni I. I. Polzunova, 2020. pp. 23–29.
8. Smirnov A. N., Ababkov N. V., Oshchepkov N. F. et al. Evaluation of the resource of long-term operating metal of fuel and energy complex equipment based on structural criteria. Svarka i diagnostika. 2015. No. 5. pp. 9–12.
9. Wenchun Jiang, Shaohua Li, Yun Luo, Shugen Xu. Creep damage analysis of a lattice truss panel structure high temp. Mater. Proc. 2017. Vol. 36. Iss. 1. pp. 89–96.
10. Dobrotvorsky A. M., Maslikova E. I., Andreeva V. D. Influence of operational factors on the coils material structure of technological tubular furnaces. Zavodskaya laboratoriya. Diagnostika materialov. 2015. Vol. 81. No. 9. pp. 32–40.
11. Dobrotvorsky A. M., Gyulikhandanov E. L., Maslikova E. I. Degradation of the structure and properties of pipes made of heat-resistant steels after long-term operation at oil refineries. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. 2016. No. 1 (238). pp. 136–144.
12. Balina O. V., Nassonov V. V. Thermal fatigue of the thermal power plant steam pipeline material. Inzhenerny vestnik Dona. 2021. No. 5.
13. Grigoryev A. O., Emelyanov A. V., Hangu Yu. E., Sherstnev V. A. Calculation of the long-term strength resource of heat-resistant steels. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. 2013. No. 3 (178). pp. 199–205.
14. Dobrotvorsky A. M., Sokolov V. L., Antonov M. I., Shevyakova E. P. et al. Changes in mechanical properties of furnace coil metal during long-term operation. Khimicheskaya tekhnika. 2016. No. 1. pp. 26–31.
15. Shakhnazarov K. Y., Pryakhin E. I., Troshina E. Y. Rationale for signs of transformation in iron near 200 °C. Letters on Materials. 2022. Vol. 12, Iss. 4. pp. 298–302. DOI: 10.22226/2410-3535-2022-4-298-302
16. Arshakuni A. L., Lokoshchenko A. M., Kiselevsky V. N. et al. Regularities of creep and long-term strength: handbook. Edited by S. A. Shesterikov. Moscow : Mashinostroenie, 1983. 101 p.
17. Naumenko K., Altenbach H. Modeling high temperature materials behavior for structural analysis. Part I: Continuum Mechanics Foundations and Constitutive Models. Springer, 2016. 381 p.
18. Naumenko K., Altenbach H. Modeling high temperature materials behavior for structural analysis. Part II. Solution Procedures and Structural Analysis Examples. Springer, 2019. 224 p.
19. Zhurkov S. N. Kinetic concept of the strength of solids. Int. J. Fracture Mech. 1965. Vol. 1, Iss. 4. pp. 311–323.
20. Brovman M. Ya. Creep deformation of beams under compression and bending stresses. Mechanics of Solids. 2017. Vol. 52. Iss. 1. pp. 75–80.
21. GOST 28845–90. Machines for creep, long-term strength and relaxation testing materials. General technical requirements. Introduced: 01.01.1993.
22. PNAE G-7-002-86. Standards for calculation of strength of equipment and pipelines of nuclear power plants. Introduced: 01.07.1987.
23. Ding Kai Jian. Structural-phase transformations of heat-resistant steels and alloys not associated with undergoing polymorphic transformations. Interaktivnay nauka. 2023. No. 5 (81). pp. 53–58. DOI: 10.21661/r-559448
24. Dobrotvorsky A. M., Gyulikhandanov E. L., Maslikova E. I. Degradation of the structure and properties of pipes made of heat-resistant steels after long-term operation at oil refineries. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Metallurgiya i materialovedenie. 2016. No. 1 (238). pp. 136–144.
25. Bakhtizin R. N., Zaripov R. M., Korobkov G. E., Masalimov R. B. Evaluation of the influence of internal pressure causing additional bending of a pipeline. Zapiski Gornogo instituta. 2020. Vol. 242. p. 160. DOI: 10.31897/PMI.2020.2.160
26. Vologzhanina S. A., Ermakov B. S., Ermakov S. B., Khuznakhmetov R. M. Relationship between operating conditions and the emergence of nano- and ultradispersed grain boundary defects in welded joints. Tsvetnye Metally. 2023. No. 8. pp. 80–85.
27. Popov G., Bolobov V., Zhuikov I., Zlotin V. Development of the kinetic equation of the groove corrosion process for predicting the residual life of oil-field pipelines. Energies. 2023. Vol. 16, Iss. 20. DOI: 10.3390/en16207067
28. Bezyazychny V. F., Scherek M., Pervov M. L., Timofeev M. V. et al. Study of the influence of temperature on the ability of metals to accumulate energy during their plastic deformation. Zapiski Gornogo instituta. 2019. Vol. 235. p. 55. DOI: 10.31897/PMI.2019.1.55
29. Pryakhin E. I., Sharapova D. M. Understanding the structure and properties of the heat affec ted zone in welds and model specimens of high-strength low-alloy steels after simulated heat cycles. CIS Iron and Steel Review. 2020. Vol. 19. pp. 60–65.
30. Maksarov V. V., Vasin S. A., Efimov A. E. Dinamic stabilization in reaming internal surfaces of welded components. Russian Engineering Research. 2021. Vol. 10. pp. 939–943. DOI: 10.3103/S1068798X2110018X
31. Order of the Federal Service for Environmental, Technological and Nuclear Supervision dated 15.12.2020 No. 535 “On approval of federal norms and rules in the field of industrial safety. Rules for the implementation of operational control of metal and extension of the service life of the main elements of boilers and pipelines of thermal power plants” (Registered 31.12.2020 No. 61985).
32. GOST 5639–82. Steels and alloys. Methods of detection and determination of grain size. Introduced: 01.01.1983.
33. Bazhin V. Yu., Bashar Issa. Effect of heat treatment on the microstructure of steel coils of a heating tube furnace. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 393–400. DOI: 10.31897/PMI.2021.3.8
34. Dmitrik V. V., Garashchenko E. S., Glushko A. V., Sokolova V. N. et al. Recovery heat treatment of steam pipelines and their welded joints (review). Avtomaticheskaya svarka. 2019. No. 1. pp. 18–21.
35. Karankevich V. V. Recovery heat treatment as a method for increasing the service life of thermal power plant steam pipelines. Actual issues of power engineering: proceedings of the 73rd Scientific and technical conference of students and postgraduates. Belarusian National Technical University, Power Engineering Faculty, Section “Thermal Power Plants”. Minsk: BNTU, 2017. pp. 553–556.
36. Zavsegolov A. A. Issues of wear of heat power equipment and prospects for the use of recovery heat treatment. Innovations in mechanical engineering: collection of works of the X International scientific and practical conference, Kemerovo, November 26–29, 2019. Kemerovo: T. F. Gorbachev Kuzbass State Technical University. 2019. pp. 583–586.
37. Loskutov S. A., Koryagin Yu. D., Bukin Yu. A. Optimization of the structure and properties of long-term operating metal of steam pipelines made of 12Kh1MF steel by recovery heat treatment. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Metallurgiya». 2014. Vol. 14. No. 4. pp. 45–51.
38. Kudryavtsev A. S., Markova Yu. M., Artemyeva D. A. Changes of steel grade 10Cr2Mo as a result of structural and phase transformations caused by long-term high-temperature operation. Chernye Metally. 2023. No. 5. pp. 53–58.

Полный текст статьи Расчетно-экспериментальные исследования остаточного ресурса длительной прочности легированных жаропрочных сталей
Назад