Journals →  Tsvetnye Metally →  2024 →  #9 →  Back

HEAVY NON-FERROUS METALS
ArticleName Extraction of lead from sulfate cakes of copper smelter dust leaching
DOI 10.17580/tsm.2024.09.03
ArticleAuthor Kovyazin A. A., Timofeev K. L., Maltsev G. I.
ArticleAuthorData

JSC Uralelectromed, Verkhnyaya Pyshma, Russia

A. A. Kovyazin, Deputy Head of the Shop, e-mail: A.Kovyazin@uralcopper.com

 

JSC Uralelectromed, Verkhnyaya Pyshma, Russia ; Technical University of UMMC, Verkhnyaya Pyshma, Russia

K. L. Timofeev, Head of the Engineering and Production Management Department1, Associate Professor of the Department for Metallurgy2, Doctor of Technical Sciences, e-mail: K.Timofeev@uralcopper.com

 

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
G. I. Maltsev, Senior Researcher, Doctor of Technical Sciences, e-mail: maltsewg@yandex.ru

Abstract

Autoclave technology of sulfuric acid leaching of electrostatic dust of a copper smelter allows quantitatively (92–95%) to transfer zinc and copper into solution with minimal arsenic transfer (≤3.5%); the bulk of lead and arsenic remains in the insoluble residue (cake), which has the following composition, %: 24 Fe; 11.5 As; 7.2 Pb; 1.8 Cu; 0.5 Zn. For lead extraction, it is rational to use salt leaching of the cake, which allows lead to be transferred into solution, leaving arsenic in the insoluble residue for disposal. The purpose of the work is to select the optimal parameters for the process of salt dissolution of lead. A thermodynamic analysis was performed by constructing equilibrium phase diagrams for the PbSO4 – H2O – NaCl system to identify compounds in the liquid and solid phases. The presence of soluble compounds PbCl42–, PbCl3_, PbCl2 and PbCl+ was established, the ratio of which depends on the temperature and concentration of sodium chloride. The process of spontaneous dissolution of lead sulfate occurs with the formation of PbCl42–, the appearance of other soluble lead products is associated with the decomposition of PbCl42– anions. The optimal process parameters were established: solvent concentration, g/dm3: 250 NaCl; 50 CaCl2; L:S = 10; T = 60 °C; ω = 31.4 rad/s; duration 1 h. In accordance with the shrinking core model, the data on the kinetics of lead leaching were processed using equations corresponding to external and internal diffusion kinetic modes of dissolution. The minimum values of the rate constant were found for the kinetic mode (k = 0.0007÷0.0009 s–1), and the maximum values were found for the internal diffusion mode (k = 0.0074÷0.0078 s–1). They are determined by values of the activation energy: maximum (E = 5.77 kJ/mol) for the kinetic mode and minimum (E = 1.21 kJ/mol) for the internal diffusion mode. In general, the process corresponds to the diffusion mode. The introduction of an integrated technology for dust leaching with subsequent processing of cake containing lead and arsenic by dissolution in chloride solutions allows for an increase in lead extraction by 3-5% compared to the Waelz technology, ensuring a profitability of about 60 million rubles/year and converting arsenic into a low-toxic product suitable for disposal.

keywords Lead, leaching, salt, thermodynamics, analysis, kinetics, diffusion and kinetic modes
References

1. Lee J.-H., Han K.-S., Hwang K.-T., Kim J.-H. Recycling of steelmaking electric arc furnace dust into aqueous cyan ceramic ink for inkjet printing process and its printability. Ceramics International. 2021. Vol. 47, Iss. 12. pp. 16964–16971. DOI: 10.1016/j.ceramint.2021.03.005
2. Omran M., Fabritius T. Effect of steelmaking dust characteristics on suitable recycling process determining: Ferrochrome converter (CRC) and electric arc furnace (EAF) dusts. Powder Technology. 2017. Vol. 308. pp. 47–60. DOI: 10.1016/j.powtec.2016.11.049
3. Lingzhi Yang, Hang Hu, Mengxian Wang, Feng Chen et al. Comparative life cycle assessment and techno-economic analysis of electric arc furnace steelmaking processes integrated with solar energy system. Journal of Cleaner Production. 2023. Vol. 425. 138868. DOI: 10.1016/j.jclepro.2023.138868
4. Elkribi-Boukhris S., Boughattas I., Sappin-Didier V., Helaoui S. et al. Exposure to polymetallic contaminated sites induced toxicological effects on chicken lungs: A multi-level analysis. Chemosphere. 2024. Vol. 354. 141574. DOI: 10.1016/j.chemosphere.2024.141574
5. Chen Zhen-yu, Zhao Yuan-yi, Chen Dan-li, Huang Hai-tao et al. Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area, Henan Province, central China. China Geology. 2023. Vol. 6, Iss. 1. pp. 15–26. DOI: 10.31035/cg2023003
6. Xiaohui Zhang, Kang Tian, Yimin Wang, Wenyou Hu et al. Identification of sources and their potential health risk of potential toxic elements in soils from a mercury-thallium polymetallic mining area in Southwest China: Insight from mercury isotopes and PMF model. Science of The Total Environment. 2023. Vol. 869. 161774. DOI: 10.1016/j.scitotenv.2023.161774
7. Xianqing Xu, Zhengqi Guo, Deqing Zhu, Jian Pan et al. Application of coal-based direct reduction-magnetic separation process for recycling of high-iron-content non-ferrous metallurgical wastes: Challenges and opportunities. Process Safety and Environmental Protection. 2024. Vol. 183. pp. 59–76. DOI: 10.1016/j.psep.2023.12.057
8. Xuchao Wang, Chengyi Ding, Hongming Long, Yuxi Wu et al. A novel approach to treating nickel-containing electroplating sludge by solidification with basic metallurgical solid waste. Journal of Materials Research and Technology. 2023. Vol. 27. pp. 3644–3654. DOI: 10.1016/j.jmrt.2023.10.132
9. Ray A. R., Mishra S. Hydro metallurgical technique as better option for the recovery of rare earths from mine tailings and industrial wastes. Sustainable Chemistry and Pharmacy. 2023. Vol. 36. 101311. DOI: 10.1016/j.scp.2023.101311
10. Qingzhu Li, Xinting Lai, Zhenxing Liu, Fei Chai et al. Thiourea-assisted selective removal of arsenic from copper smelting flue dusts in NaOH solution. Hydrometallurgy. 2024. Vol. 224. 106246. DOI: 10.1016/j.hydromet.2023.106246
11. Feng Yan, Hongkun Dai, Yu Wang, Maoguang Ruan et al. The study on the shortcut approach for cooperative disposal of arsenic-rich copper dust and waste acid to prepare high-purity copper. Journal of Cleaner Production. 2024. Vol. 447. 141534. DOI: 10.1016/j.jclepro.2024.141534
12. Tengteng Shi, Baoqiang Xu, Jilin He, Xinyang Liu et al. Arsenic release pathway and the interaction principle among major species in vacuum sulfide reduction roasting of copper smelting flue dust. Environmental Pollution. 2023. Vol. 330. 121809. DOI: 10.1016/j.envpol.2023.121809
13. Wenquan Niu, Yan Li, Qiang Li, Jingsong Wang et al. Physical and chemical properties of metallurgical coke and its evolution in the blast furnace ironmaking process. Fuel. 2024. Vol. 366. 131277. DOI: 10.1016/j.fuel.2024.131277
14. Hongjie Yan, Huanyu Xie, Wenyan Zheng, Liu Liu. Numerical simulation of combustion and melting process in an aluminum melting Furnace: A study on optimizing stacking mode. Applied Thermal Engineering. 2024. Vol. 245. 122840. DOI: 10.1016/j.applthermaleng.2024.122840
15. Pashchenko D., Karpilov I., Polyakov M., Popov S. K. Techno-economic evaluation of a thermochemical waste-heat recuperation system for industrial furnace application: Operating cost analysis. Energy. 2024. Vol. 295. 131040. DOI: 10.1016/j.energy.2024.131040
16. Naboychenko S. S., Kovyazin A. A., Timofeev K. L., Krayukhin S. A. Processing of metallurgical dusts in sulfate-nitrate solutions. Tsvetnye Metally. 2020. No. 11. pp. 19–23.
17. Jiarun Zhang, Zhiyong Liu, Zhihong Liu. An efficient and affordable hydrometallurgical process for co-treatment of copper smelting dust and arsenic sulfide residue. Journal of Cleaner Production. 2023. Vol. 419. 137955. DOI: 10.1016/j.jclepro.2023.137955
18. Ettler V., Raus K., Mihaljevic M., Kríbek B. et al. Bioaccessible metals in dust materials from non-sulfide Zn deposit and related hydrometallurgical operation. Chemosphere. 2023. Vol. 345. 140498. DOI: 10.1016/j.chemosphere.2023.140498
19. Rong T., Yuan Y., Yang H., Yu H. et al. Investigation of the enrichmentpurification process and electrochemical performance of kish graphite in dust from blast furnace tapping yard. Waste Management. 2024. Vol. 175. pp. 121–132. DOI: 10.1016/j.wasman.2023.12.055
20. Wu Xiao-bin, Zhu Zeng-li, Kong Hui, Fan You-qi et al. Electrochemical reduction mechanism of Zn2+ in molten NaCl–KCl eutectic. Transactions of Nonferrous Metals Society of China. 2022. Vol. 32, Iss. 9. pp. 3088–3098. DOI: 10.1016/S1003-6326(22)66005-9
21. Xinxin Liu, Fenghui Wu, Guangfei Qu, Ting Zhang, Minjie He. Recycling and reutilization of smelting dust as a secondary resource: A review. Journal of Environmental Management. 2023. Vol. 347. 119228. DOI: 10.1016/j.jenvman.2023.119228
22. Kovyazin A., Timofeev K., Krauhin S. Copper Smelting Fine Dust Autoclave Leaching. Materials Science Forum. 2019. Vol. 946. pp. 615–620. DOI: 10.4028/www.scientific.net/MSF.946.615
23. Ning Zhang, Feng Xie, Wei Wang, Diankun Lu. Study on performance and mechanism of foamed ceramics based on lead fuming furnace slag. Ceramics International. 2024. Vol. 50, Iss. 2, Part B, рр. 3307–3318. DOI: 10.1016/j.ceramint.2023.11.072
24. Dongjie Zhang, Ting Ma. Study on slagging in a waste-heat recovery boiler associated with a bottom-blown metal smelting furnace. Energy. 2022. Vol. 241. 122852. DOI: 10.1016/j.energy.2021.122852
25. De'an Pan, Lili Li, Yufeng Wu, Tingting Liu, Hailiang Yu. Characteristics and properties of glass-ceramics using lead fuming slag. Journal of Cleaner Production. 2018. Vol. 175. рр. 251–256. DOI: 10.1016/j.jclepro.2017.12.030
26. Neto A. P. de A., Sales F. A., Ramos W. B., Brito R. P. Thermo-environmental evaluation of a modified Waelz process for hazardous waste treatment. Process Safety and Environmental Protection. 2021. Vol. 149. рр. 442–450. DOI: 10.1016/j.psep.2020.11.021
27. Chekushin V. S., Chekushin M. V., Oleynikova N. V., Marchenko N. V. Method for recovery of lead from oxygen compounds of oxysulfate fraction of battery scrap. Patent RF, No. 2753670. Applied: 25.12.2020. Published: 19.08.2021. Bulletin No. 23.
28. Nor Kamariah, Panagiotis Xanthopoulos, Jia Song, Natalia Pires Martins et al. Selective Lead Extraction from Zinc Calcine and Zinc Leaching Residue by Leaching with Monoethanolamine Solvent Systems. Industrial & Engineering Chemistry Research. 2024. Vol. 63, Iss. 14. pp. 6110–6120. DOI: 10.1021/acs.iecr.4c00291
29. Sergeeva Yu. F., Mamyachenkov S. V., Sergeev V. A., Gallyamova N. R. Advanced methods of processing dust from copper smelting plants. Butlerovskie soobshcheniya. 2012. Vol. 30, No. 5. pp. 1–19.
30. Villen-Guzman M., Garcia-Rubio A., Paz-Garcia J. M., Rodríguez-Maroto J. M. et al. The use of ethylenediaminetetraacetic acid as enhancing agent for the remediation of a lead polluted soil. Electrochimica Acta. 2015. Vol. 181. рр. 82–89. DOI: 10.1016/J.ELECTACTA.2015.03.061
31. Karelov S. V., Anisimova O. S., Mamyachenkov S. V., Sergeev V. A. Leaching of lead cakes from zinc production in a complexing agent. Izvestiya vuzov. Tsvetnaya metallurgiya. 2008. No. 2. pp. 20–23.
32. Geydarov A. A., Akhmedov M. M., Karimov M. A., Valiev B. S., Efendieva S. G. Study of the kinetics of lead sulfate leaching in sodium chloride solutions. Metally. 2009. No. 6. pp. 17–22.
33. Ryumin A. I., Mironkina N. V. Study of kinetic regularities of lead sulfate dissolution in sodium chloride and hydroxide solutions. Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tekhnika i tekhnologii. 2013. Vol. 6, No. 4. pp. 450–454.
34. Maltsev G. I., Timofeev K. L. Calculation and optimization of technologies using HSC Chemistry: tutorial. Vologda : Infra-Inzheneriya, 2023. 212 p.
35. Georgiou D., Papangelakis V. G. Sulphuric acid pressure leaching of a limonitic laterite: chemistry and kinetics. Hydrometallurgy. 1998. Vol. 49. рр. 23–46. DOI: 10.1016/S0304-386X(98)00023-1
36. Serebryakov M. A. Development of hydrometallurgical technology for processing substandard copper concentrates of copper sandstones beneficiation: Dissertation … of Candidate of Engineering Sciences. Saint Petersburg, 2018. 131 p.

Language of full-text russian
Full content Buy
Back