Journals →  Горный журнал →  2024 →  #9 →  Back

ГЕОЛОГИЯ, ПОИСКИ И РАЗВЕДКА ТВЕРДЫХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ, МИНЕРАГЕНИЯ
ArticleName Оливин-шпинелевая геотермометрия – индикатор формационной принадлежности пород и основа для геодинамических реконструкций в условиях Антарктиды
DOI 10.17580/gzh.2024.09.12
ArticleAuthor Таловина И. В., Бабенко И. А., Илалова Р. К., Дурягина А. М.
ArticleAuthorData

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия

Таловина И. В., зав. кафедрой, проф., д-р геол.-минерал. наук, i.talovina@gmail.com

Бабенко И. А., аспирант

Илалова Р. К., доцент, канд. геол.-минерал. наук

 

Институт минералогии Фрайбергской горной академии, Фрайберг, Германия

Дурягина А. М., канд. геол.-минерал. наук

Abstract

Приведены результаты изучения составов породообразующих и акцессорных минералов различных мафитовых и ультрамафитовых формаций. Рассчитаны и проанализированы температуры образования горных пород на основании четырех оливин-шпинелевых геотермометров для разных формаций ультрамафитов и мантийных ксенолитов на примере Антарктиды, Монголии, Урала и других регионов. Отмечено, что температуры оливин-шпинелевого равновесия в породах офиолитовых зональных и расслоенных массивов оказываются сопоставимыми, а в мантийных ксенолитах – повышенными по отношению к ним. Сделан вывод о применимости основных версий геотермометров для вычисления темпера-
тур мафит-ультрамафитовых систем для реконструкции геодинамических условий формирования различных блоков земной коры. Рассмотрены некоторые типоморфные индикаторы формационной принадлежности горных пород, а именно: отношение Ni:Mn в оливине и железистость в хромшпинелиде. 
Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (FSRW-2024–0003. Фундаментальные междисциплинарные исследования геологических образований Антарктиды в районе станции Восток).

keywords Геотермометрия, формации, ультрамафиты, мафиты, оливин, шпинель, Антарктида
References

1. Roeder P. L., Campbell I. H., Jamieson H. E. A re-evaluation of the olivine–spinel geothermometer. Contributions to Mineralogy and Petrology. 1979. Vol. 68, Iss. 3. pp. 325–334.

2. Ono A. Fe–Mg partitioning between spinel and olivine. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists. 1983. Vol. 78, Iss. 4. pp. 115–122.
3. Jianping L., Kornprobst J., Vielzeuf D., Fabriès J. An improved experimental calibratio n of the olivine–spinel geothermometer. Chinese Journal of Geochemistry. 1995. Vol. 14, Iss. 1. pp. 68–77.
4. O’Neill H. S. C., Wood B. J. An experimental study of Fe–Mg partitioning between garnet and olivine and its calibration as a ge othermometer. Contributions to Mineralogy and Petrology. 1979. Vol. 70, Iss. 1. pp. 59–70.
5. Sergeeva A. V., Kiryukhin A. V., Usacheva O. O., Rychkova T. V ., Kartasheva E. V. et al. The impact of secondary mineral formation on Na-K-geothermometer readings: a case study for the Valley of Geysers hydrothermal system (Kronotsky State Nature Biosphere Reserve, Kamchatka). Journal of Mining Institute. 2023. Vol. 262. pp. 526–540.
6. Grikurov G. E., Leichenkov G. L., Mikhalsky E. V. Antarctic tectonic evolution in the light of modern geodynamic concepts. Structure and Evolution of the Lithosphere. Series : Russia’s Contribution to the 2007/08 International Polar Year. Moscow–Saint-Petersburg : Paulsen, 2010. pp. 89–108.
7. Jacobs J., Mikhalsky E., Henjes-Kunst F., Läufer A., Thomas R. J. et al. Neoproterozoic geodynamic evolution of easternmost Kalahari: Constraints from U–Pb–Hf–O zircon, Sm–Nd isotope and geochemical data from the Schirmacher Oasis, East Antarctica. Precambrian Research. 2020. Vol. 342. ID 105553.
8. Korago E. A., Kovaleva G. N., Schekoldin R. A., Ilin V. F., Gusev E. A. et al. Geological structure of the Novaya Zemlya Archipelago (West Russian Arctic) and peculiarities of the tectonics of the Eurasian Arctic. Geotectonics. 2022. Vol. 56, No. 2. pp. 123–156.
9. Migdisova N. A., Sushevskaya N. M., Portnyagin M. V., Shishkina T. A., Kuzmin D. V. et al. Composition of phenocrysts in lamproites of Gaussberg Volcano, East Antarctica. Geochemistry International. 2023. Vol. 61, No. 9. pp. 911–936.
10. Litvinenko V. Foreword: Sixty-year Russian history of Antarctic sub-glacial lake exploration and Arctic natural resource development. Geochemistry. 2020. Vol. 80, Iss. 3. ID 125652.
11. Gulbin Yu. L., Abdrakhmanov I. A., Gembitskaya I. M., Vasiliev E. A. Oriented microinclusions of Al–Fe–Mg–Ti oxides in quartz from metapelitic granulites of the Bunger Hills, East Antarctica. Geology of Ore Deposits. 2023. Vol. 65, No. 7. pp. 656–668.
12. Bolshunov A. V., Vasilev D. A., Dmitriev A. N., Ignatev S. A., Kadochnikov V. G. et al. Results of complex experimental studies at Vostok station in Antarctica. Journal of Mining Institute. 2023. Vol. 263. pp. 724–741.
13. Ageev A., Egorov A., Krikun N. The principal characterized features of earth’s crust within regional strike–slip zones. Advances in Raw Material Industries for Sustainable Development Goals : The Russian–German Raw Materials Forum. London : Taylor & Francis Group, 2021. pp. 78–83.
14. Khain V. E., Bozhko N. A. Historical Geotectonics. Pre-Cambrian Age. Moscow : Nedra, 1988. 382 p.
15. Chashchukhin I. S., Votyakov S. L. Spinel lherzolite of the Northern Kraka Massif (Southern Urals): Relics of the least transformed matter of the upper mantle. Doklady Earth Sciences. 2010. Vol. 431, Iss. 2. pp. 462–465.
16. Nefedov Yu., Gribanov D., Gasimov E., Peskov D., Han G. et al. Development of Achimov deposits sedimen tation model of one of the West Siberian oil and gas province fields. Reliability: Theory & Applications. 2023. Vol. 18, Special Issue 5(75). pp. 441–448.
17. Kovalev S. G., Kovalev S. S. Ti–Fe–Cr spinel s in layered (stratified) complexes of the western slope of the Southern Urals: Species diversity and formation conditions. Journal of Mining Institute. 2022. Vol. 255. pp. 476–492.
18. O’Connor C., Alexandrova T. The geological occurrence, mineralogy, and processing by flotation of platinum group minerals (PGMs) in South Africa and Russia. Minerals. 2021. Vol. 11, Iss. 1. ID 54.
19. Scoates J. S., Wall C. J. Geochronology of Layered Intrusions. Layered Intrusions. Ser.: Springer Geology. Springer : Dordrecht, 2015. pp. 3–74.
20. Smolkin V. F., Mokrushin A. V. Geochemistry of the Paleoproterozoic layered intrusions of the Monchegorsk ore area, Kola region. Trudy Fersmanovskoy nauchnoy sessii GI KNTs RAN. 2019. No. 16. pp. 544–549.
21. Biagioni C., Pasero M. The systematics of the spinel-type minerals: An overview. American Mineralogist. 2014. Vol. 99, Iss. 7. pp. 1254–1264.
22. Wu J., Liu T., Wang F. Genesis and geodynamic significance of chromitites from the Fuchuan Ophiolite, Southern China, as evidenced by trace element fingerprints of chr omite, olivine and pyroxene. Acta Geologica Sinica. 2023. Vol. 97, Iss. 1. pp. 134–148.
23. Bussolesi M., Grieco G., Cavallo A., Zaccarini F. Dif ferent tectonic evolution of fast cooling ophiolite mantles recorded by olivine–spinel geothermometry: Case studies from Iballe (Albania) and Nea Roda (Greece). Minerals. 2022. Vol. 12, Iss. 1. ID 64.
24. Sukhanova К. G., Kuznetsov А. B., Skublov S. G., Galankin a О. L. Evaluation of thermal metamorphism temperature of equilibrated ordinary chondrites. Geodynamics & Tectonophysics. 2022. Vol. 13, Iss. 2s. ID 0618.
25. Wan Z., Coogan L. A., Canil D. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. American Mineralogist. 2008. Vol. 93, Iss. 7. pp. 1142–1147.
26. Putikov O. F., Senchina N. P., Talovin a I. V., Duryagina A. M., Telegin Yu. M. et al. Geoelectrochemical detection of PGE content anomalies within the Svetlyi Bor massif (Central Urals). Russian Geology and Geophysiscs. 2017. Vol. 58, No. 7. pp. 815–821.
27. Mikhaylova Yu. A., Pakhomovskiy Ya. A., Kalashnikov A. O., Yakovenchuk V. N. Formation of layering of the Lovozero peralkaline intrusion (Kola peninsula, Russia): New data. Trudy Fersmanovskoy nauchnoy sessii GI KNTs RAN. 2022. No. 19. pp. 222–226.
28. Heinonen J. S., Jennings E. S., Riley T. R. Crystallisation temperatures of the most Mg-rich magmas of the Karoo LIP on the basis of Al-in-olivine thermometry. Chemical Geology. 2015. Vol. 411. pp. 26–35.
29. Foley S. F., Andronikov A. V., Melzer S. Petrology of ultramafic lamprophy res from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland. Mineralogy and Petrology. 2002. Vol. 74, Iss. 2-4. pp. 361–3 84.
30. Glebovitskii V. A., Nikitina L. P., Saltykova A. K., Pushkarev Yu. D., Ovchinnikov N. O. et al. Thermal and chemical heterogeneity of the upper mantle beneath the Baikal–Mongolia Territory. Petrology. 2007. Vol. 15, No. 1. pp. 58–89.
31. Stepanov S. Yu., Palamarchuk R. S., Khanin D. A., Varlamov D. A., Antonov A. V. The distribution and speciation of PGEs in chromitite from the Svetloborsky, Veresovoborsky, and Kamenushensky Clinopyroxenite–Dunite Massifs (Middle Urals). Moscow University Geology Bulletin. 2018. Vol. 73, No. 6. pp. 527–537.
32. Saveliev D. E., Makatov D. K., Rakhimov I. R., Gataullin R. A., Shilovskikh V. V. Silicates from lherzolites in the south-eastern part of the Kempirsay Massif as the source for giant chromitite deposits (the Southern Urals, Kazakhstan). Minerals. 2022. Vol. 12, Iss. 8. ID 1061.
33. Yurichev А. N. Accessory spinelides as a tool for reconstruction of thermodynamic parameters of crystallization. Rudy i metally. 2014. No. 5. pp. 32–36.
34. Chistyakov A. V., Sharkov E. V. Petrology of the Early Paleoproterozoic Burakovsky C omplex, Southern Karelia. Petrology. 2008. Vol. 16, No. 1. pp. 63–86.
35. Yakovleva A. A., Movchan I. B., Medinskaia D. K., Sadykova Z. I. Quantitative interp retations of potential fields: from parametric to geostructural recalculations. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2023. Vol. 334, No. 11. pp. 198–215.

Language of full-text russian
Full content Buy
Back