Journals →  Gornyi Zhurnal →  2024 →  #9 →  Back

APPLIED MINING AND OIL-FIELD GEOLOGY AND GEOPHYSICS
ArticleName Recent trends in oil and gas geology software modeling
DOI 10.17580/gzh.2024.09.04
ArticleAuthor Nefedov Yu. V., Vostrikov N. N., Gribanov M. A., Yashmolkin A. M.
ArticleAuthorData

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

Yu. V. Nefedov, Associate Professor, Candidate of Geological and Mineralogical Sciences, yurijnefedov@yandex.ru
N. N. Vostrikov, Student
M. A. Gribanov, Student
A. M. Yashmolkin, Student

Abstract

The article reviews the range of advanced software systems used in geological modeling of oil and gas reservoirs. Particular attention is given to the strategies of software development companies under conditions of the stringent digital control on the global software market. The scope of the analysis embraces the competitive advantages of the best software systems Petrel, tNavigator and Geoplat Pro in application in Russia. For instance, Rock Flow Dynamics’ product tNavigator is a modular-sized package developed for the 3D modeling of oil and gas reservoirs, and for the hydrodynamic and geomechanical computations. Schlumberger develops Petrel platform integrated in cloud-based software environment DELFI, which provides extended computational capabilities and allows access to various cloud functions. Artificial intelligence technologies are the critical component in prediction of properties of geological and seismic sections. GridPoint Dynamics has actualized advanced machine learning tools at a high level in product Geoplat Pro. The cooperation of Schlumberger with Yandex.Cloud is discussed for the benefit of deployment of IT environment ruDELFI as per the Russian legislation. The forecast of the further development of the software system within the frames of the Russian market and law is made. The Russian companies are anticipated to progress dynamically, with introduction of innovative solutions and with pushing the range limits of product capabilities. The authors discuss the ways of raising the competitive capacities of Russian software products through integration and adaptation of advanced technologies to the specifics of the Russian market. It is emphasized that development and application of domestic software ensures technological independence and improved ability of the oil and gas sector.
The authors appreciate participation of D. A. Gribanov, Post-Graduate Student at the Empress Catherine II Saint-Petersburg Mining University in this paper preparation.

keywords Software system, Petrel, tNavigator, DELFI, geological modeling, Geoplat Pro, Rock Flow Dynamics, Schlumberger
References

1. Available at: https://docs.cntd.ru/document/565341150 (accessed: 29.05.2024).
2. Available at: https://docs.cntd.ru/document/557309575 (accessed: 29.05.2024).

3. Domestic software is to pervade 70 % of purchased IT products at public companies by 2024. 2021. Available at: https://tass.ru/ekonomika/11705375 (accessed: 25.04.2024).
4. Chernova V. Yu., Zobov A. M., Starostin V. S., Butkovskaya G. V. Sustainable marketing communication strategies of Russian companies under the import substitution policy. Entrepreneurship and Sustainability Issues. 2017. Vol. 5, No. 2. pp. 223–230.
5. Rosneft is to discard import of technology in the long term. 2014. Available at: https://tass.ru/ekonomika/1422831 (accessed: 25.04.2024).
6. Saakyan M. I., Zakrevskiy K. E., Gazizov R. K., Lepilin A. E., Ryzhikov E. A. The prospects of corporate geological modeling software creation. Neftyanoe khozyaystvo. 2019. No. 11. pp. 50–54.
7. Geological modeling. Rock Flow Dynamics, 2024. Available at: https://rfdyn.ru (accessed: 25.06.2024).
8. Mardashov D. V. Development of blocking compositions with a bridging agent for oil well killing in conditions of abnormally low formation pressure and carbonate reservoir rocks. Journal of Mining Institute. 2021. Vol. 251. pp. 617–626.
9. Mardashov D., Duryagin V., Islamov S. Technology for improving the efficiency of fracture d reservoir development using gel-forming compositions. Energies. 2021. Vol. 14, Iss. 24. ID 8254.
10. Market of IT products for Russian oil and gas sector : Review. 2022. Available at: sectormedia.ru/news/oborudovanie-neft-i-gaz/rynok-it-produktov-dlyaneftegazovogo-sektora-rossii-obzor/ (accessed: 25.06.2024).
11. Geoplat Geological Modeling. GridPoint Dynamics, 2021. Available at: https://www.geoplat.pro/pro ducts/geoplat-g/ (accessed: 25.06.2024).
12. Zakrevskiy K. E., Popov V. L. The history of development of 3d geology modeling as a method for studying oil and gas reservoirs. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2021. Vol. 332, No. 5. pp. 89–100.
13. Mardashov D. V., Bondarenko А. V., Raupov I. R. Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover. Journal of Mining Institute. 2022. Vol. 258. pp. 881–894.
14. Mardashov D. V., Rogachev M. K., Zeigman Yu. V., Mukhametshin V. V. Well killing technology before workover operation in complicated conditions. Energies. 2021. Vol. 14, Iss. 3. ID 654.
15. Chen L., Wang L., Miao J., Gao H., Zhang Y. et al. Review of the application of b ig data and artificial intelligence in geology. Journal of Physics: Conference Series. 2020. Vol. 1684. ID 012007.
16. Kua ng L., Liu H., Ren Y., Luo K., Shi M. et al. Application and development trend of artificial intelligence in petroleum exploration and development. Petroleum Exploration and Development. 2021. Vol. 48, Iss. 1. pp. 1–14.
17. Driving energy innovation. Schlumberger, 2024. Available at: https://www.slb.com/driving-energy-innovation (accessed: 25.04.2024).
18. Hassani H., Silva E. S. Big Data: A big opportunity for thepetroleum and petrochemical industry. OPEC Energy Review. 2018. Vol. 42, Iss. 1. pp. 74–89.
19. Schlumberger and Yandex.Cloud open digital platform DELFI for users in Russia. 2021. Available at: cloud.yandex.ru/blog/posts/2021/12/shlyumberzhe-an d-yc (accessed: 25.04.2024).
20. Nemes I. Applications of automated Petrel workflows in 3D reservoir geologic modelling—A case study. Central European Geology. 2022. Vol. 65, Iss. 2. pp. 122–136.
21. Petrel new features. Schlumberger, 2024. Available at: software.slb.com/products/petrel/features (accessed: 25.04.2024).
22. Santos A., Scanavini H. F. A., Pedrini H., Schiozer D. J., Munerato F . P. et al. An artificial intelligence method fo r improving upscaling in complex reservoirs. Journal of Petroleum Science and Engineering. 2022. Vol. 211. ID 110071.
23. Yao J., Liu Q., Liu W., Liu Y., Chen X. et al. 3D Reservoir geological modeling algorithm based on a deep feedforward neural network: A case study of the delta reservoir of Upper Urho Formation in the X Area of Karamay, Xinjiang, China. Energies. 2020. Vol. 13, Iss. 24. ID 6699.
24. Michalak M. P., Teper L., Wellmann F., Żaba J., Gaidzik K. et al. Clustering has a meaning: Optimiza tion of angular similarity to detect 3D geometric anomalies in geological terrains. Solid Earth. 2022. Vol. 13, Iss. 11. pp. 1697–1720.
25. Podosenov A. E., Ladeyshchikov S. V., Azanova N. O., Soloveva M. A. Forecast of the geological structure based on the multivariate model of the Rostovitskoe oil field. Neftepromyslovoe delo. 2021. No. 11(635). pp. 5–13.
26. Marchesi V. R., Domingues D. L. P., Lopez A. G. T., da Fontoura S. A. B., Gonçalves C. J. et al. Geological-geomechanical modeling as a support for the design and monitoring of oil wells. Proceedings of the ISRM Conference on Rock Mechanics for Natural Resources and Infrastructure. Goiania, 2014.
27. Kozyaev A., Kurash T., Fazylov R., Korotysheva A., Onuchin S. Using 3D seismic data for well drilling support—Methodological features and practical examples. Proceedings of the EAGE Saint Petersburg. Saint-Petersburg, 2020. Vol. 2020. DOI: 10.3997/2214-4609.202053053
28. Pratama H., Latiff A. H. A. Automated geological features detection in 3D Seismic data using semi-supervised learning. Applied Sciences. 2022. Vol. 12, Iss. 13. ID 6723.
29. Hafiz I., Albesher Z., Kellogg J., Saeid E. De tecting the fault and fracture systems by using 3D seismic attribute—Ant Tracking algorithm. Second International Meeting for Applied Geoscience & Energy. Houston : Society of Exploration Geophysicists, 2022. pp. 1374–1379.
30. Madsen R. B., Høyer A.-S., Andersen L. T., Møller I., Hansen T. M. Geology-driven modeling: A new probabilistic approach for incorporating uncertain geological interpretations in 3D geological modeling. Engineering Geology. 2022. Vol. 309. ID 106833.
31. Otoo D., Hodgetts D. Porosity and permeability prediction through forward stratigraphic simulations using GPM™ and Petrel™: Application in shallow marine depositional settings. Geoscientific Model Development. 2021. Vol. 14, Iss. 4. pp. 2075–2095.
32. Olneva T. V., Zhukovskaya E. A. Sediment Modeling in Software System Petrel. Moscow : Izdatelstvo MAI, 2022. 216 p.
33. Prischepa O., Nefedov Yu., Nikiforova V., Ruiming X. Raw material base of Russia’s unconventional oil and gas reserves (hydrocarbons shale strata). Frontiers in Earth Science. 2022. Vol. 10. DOI: 10.3389/feart.2022.958315
34. Petruk A. C., Rodionova I. I., Mukhametov A. R., Galeev E. R., Iskevich I. G et al. Modeling experience of low-permeability reservoirs the case of license block of the Priobskoe field. Ekspozitsiya Neft Gaz. 2022. No. 3. pp. 18–20.
35. Prischepa O., Xu R., Martynov A., Ibatullin A., Krykova T. et al. Potential of high-carbon Domanik (Upper Devonian) Shale Deposits: Timan–Pechora oil and gas province assessment. International Journal of Engineering, Transactions B: Applications. 2024. Vol. 37, No. 8. pp. 1639–1657.
36. Degterev A. Yu. Correctness of multi-variate geological modeling under spatial nonstationarity of environment : Problem and solution. GeoEurasia 2020. Recent Technolgies of Subsoil Research and Development in Eurasia : III International Conference and Expo in Geology and Geophysics. Tver : PoliPRESS, 2020. pp. 119–122.
37. Narygi n E. I., Kovalenko A. P., Kuziv K. B. Experience in conducting multivariate calculations with an automated system for constructing a hydrodynamic model of the field. Ekspozitsiya Neft Gaz. 2022. No. 5. pp. 22–26.
38. Skublov S. G., Petrov D. A., Galankina O. L., Levashova E. V., Rogova I. V. Th-rich zircon from a pegmatite vein hosted in the wiborg rapakivi granite massif. Geosciences. 2023. Vol. 13, Iss. 12. ID 362.
39. Canhimbue L., Talovina I. Geochemical distribution of platinum metals, gold and silver in intrusive rocks of the Norilsk Region. Minerals. 2023. Vol. 13, Iss. 6. ID 719.
40. Deng H., Zheng Y., Chen J., Yu S., Xiao K. et al. Learning 3D mineral prospectivity from 3D geological m odels with convolutional neural networks: Application to a structurecontrolled hydrothermal gold deposit. Computers & Geosciences. 2022. Vol. 161. ID 105074.
41. Beloglazov I. I., Petrov P. A., Bazhin V. Yu. The concept of digital twins for tech operator training simulator design for mining and processing industry. Eurasian Mining. 2020. No. 2. pp. 50–54.
42. Sysoev A. P., Gorelik G. D. Parametric method of compensation for near-surface heterogeneity in processing CDP data. Russian Geology and Geophysics. 2017. Vol. 58, No. 6. pp. 763–768.

Language of full-text russian
Full content Buy
Back