Journals →  Gornyi Zhurnal →  2024 →  #9 →  Back

APPLIED MINING AND OIL-FIELD GEOLOGY AND GEOPHYSICS
ArticleName Tomography and geochemistry of low-permeable high-carbon Domanik-type strata in the south of the Timan–Pechora sedimentary basin
DOI 10 .17580/gzh.2024.09.05
ArticleAuthor Prishchepa O. M., Nikiforova V. S.
ArticleAuthorData

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

O. M. Prishchepa, Head of Dep artment, Doctor of Geological and Mineralogical Sciences
V. S. Nikiforova, Senior Lecturer, Candidate of Geological and Mineralogical Sciences, nikiforova_vs@pers.spmi.ru

Abstract

Widely spread within the limits of the Timan–Pechora sedimentary basin, low-permeable high-carbon strata of the late Devonian–early Carbonic time (middle-to-upper Frasnian, Famenni an and Tournaisian levels) formed during late transgression–early regression of the sea under conditions of intense progradation of the carbonate platform west–eastwards from the Timan Ridge towards the Ural Ridge. The stra ta in the relatively deep part of the marine sedimentary basin, within a wide stratigraphic range and with high content of organic matter attract interest of researchers as oil and gas source rocks and as oil and gas reservoirs (with hydrocarbons enclosed in nonconventional low-porous and low-permeable “shale” reservoir rocks). The geochemistry and micro tomography reveal some features of the structure and composition of the Domanik horizon rock mass: the organic carbon content Сorg ranges from 1 to 13.5 % but there are some interlayers with Сorg to 25–27 %; all test samples belong to type I or II of organic matter at a maturity from MK2 to M3-4; the comparison of the rock porosity before and after the chloroform–bitumen extract analysis reveals a regular increase in the values of the general and open porosity, which is the most typical of samples from exposures, as well as to the Domanik samples from shallow depths and low catagenesis zones PK3–MK1-2; the highest porosity in all zones of depths and catagenesis is intrinsic to the Domanik samples with a carbonate mineral matrix. The analysis of the permeability and porosity of the Domanik sediments is required for the detail description of the organic carbon distribution over the section, and for the assessment of its catagenetic maturation by a set of geochemical indicators.

keywords Timan–Pechora sedimentary basin, high-carbon strata, Domanik sediments, X-ray microtomograpy, pyrolysis, dissipated organic matter, hard-to-recover reserves
References

1. Kiryukhina T. A., Bolshakova M. A., Stoupakova A. V., Korobova N. I., Pronina N. V. et al. Lithological and geochemical characteristics of domanic deposits of Timan–Pechora Basin. Georesursy. 2015. No. 2(61). pp. 87–100.
2. Neruchev S. G. Source Beds and Migration of Oil : Analysis of Organic Matter in Sedimentary Rocks. Leningrad : Gostoptekhizdat, 1962. 224 p.
3. Fortunatova N. K., Varlamov A. I., Kanev A. S., Poroskun V. I., Baranova A. V. et al. Structure and assessment of the oil potential of carbonaceous carbonate–siliceous Domanik deposits in the Volga–Ural oil and gas province. Russian Geology and Geophysics. 2021. Vol. 62, No. 8. pp. 929–946.
4. Bazhenova T. K. Petroleum source formations of the Russian ancient platforms and their petroleum potential. Neftegazovaya geologiya. Teoriya i praktika. 2016. Vol. 11, No. 4. DOI: 10.17353/2070-5379/45_2016
5. Burdelnaya N. S., Derevesnikova A. A., Bushnev D. A. Off-line pyrolysis of kerogen from Domanik deposits of the Timan–Pechora basin. Vestnik Instituta geologii Komi NTs UrO RAN. 2016. No. 9-10. pp. 3–7.
6. Neruchev S. G., Vassoevich N. B., Lopatin N. V. Catagenesis Scale in the Context of Oil and Gas Formation. Anthracides : Reports of Soviet Geologists at International Geology Congress Session XV. Moscow : Nauka, 1976. pp. 47–62.
7. Khisamov R. S., Gubaydullin A. A., Bazarevskaya V. G., Yudintsev E. A. Geology of Carbonate Structurally Complex Devionian and Carbonic Reservoirs in Tatarstan. Kazan : Fen, 2010. 283 p.
8. Prishchepa O. M., Borovikov I. S., Grokhotov E. I. Oil and gas content of the understudied part in the northwest of the Timan-Pechora oil and gas province according to the results of basin modeling. Journal of Mining Institute. 2021. Vol. 247. pp. 66–81.
9. Fortunatova N. K., Shvets-Teneta-Gurii A. G., Bushueva M. A., Kanev A. S., Luchina S. A. et al. Methodology of lithologically screened and lithological oil and gas traps predicti on in Upper Devonian–Tournaisian and Lower Permian carbonate plays of eastern Volga-Urals Petroleum Province. Geologiya Nefti i Gaza. 2019. No. 3. pp. 23–38.
10. Varlamov A. I., Melnikov P. N., Poroskun V. I., Fortunatova N. K., Petersile V. I. et al. Unconventional oil reservoirs in high-carbon carbonate–siliceous Domanik formations, Volga–Urals Province: R esults of studies and future development trends. Geologiya Nefti i Gaza. 2020. No. 6. pp. 33–52.
11. Varlamov A. I., Petersilye V. I., Poroskun V. I., Fortunatova N. K., Komar N. V. et al. Technique of oil reserves estimation in Domanik deposits. Geologiy a Nefti i Gaza. 2017. No. 5. pp. 51–65.
12. Sannikovа I. A., Bolshakova M. A., Stupakova A. V., Sautkin R. S., Suslova A. A. et al. Modeling of hydrocarbon generation by Domanic source rock of the Timan–Pechora basin using different kinetics of kerogen decomposition. Georesursy. 2017. Special issue. pp. 65–79.
13. Astakhov S. M. The vitrinite maturation model refinement due to increased reflectance in the overstressed areas. Geologiya Nefti i Gaza. 2014. No. 3. pp. 64–74.
14. Bushnev D. A. Organic matter of the Ukhta Domanik. Doklady Earth Sciences. 2009. Vol. 426, No. 4. pp. 677–680.
15. Gurari F. G. Domanikites and their oil and gas content. Sovetskaya geologiya. 1980. No. 11. pp. 3–12.
16. Neruchev S. G., Rogozina E. A., Zelinchenko I. A. et al. Oil and Gas Formation in Domanik-Type Sediments. Leningrad : Nedra, 1986. 246 p.
17. Neruchev S. G. (Ed.). Reference Book on Oil and Gas Geochemistry. Saint-Petersburg : Nedra, 1998. 576 p.
18. Kiryukhina T. A. , Fadeeva N. P., Stupakova A. V., Poludetkina E. N., Sautkin R. S. Domanik deposits of Timan–Pechora and Volga–Ural basins. Geologiya Nefti i Gaza. 2013. No. 3. pp. 76–87.
19. Bazhenova T. K., Shiman skiy V. K., Vasileva V. F., Shapiro A. I., Yakovleva (Gembitskaya) L. A. et al. Organic geochemistry of the Timan–Pechora basin. Saint-Petersburg : VNIGRI, 2008. 164 p.
20. Bogatsky V. I., Bogdanov N. A., Kostyuchenko S. L., Senin B. V., Sobolev S. F. et al. Explanatory Notes fo r the Tectonic Map of the Barents Sea and the Northern Part of European Russia, Scale 1:2 500 000. Moscow : Institute of the Lithosphere, Russian Academy of Sciences, 1996. 101 p.
21. Kontorovich A. E., Burshtein L. M., Livshits V. R. The Theory of Naphthidogenesis: A quantitative model of the catagenetic evolution of aquatic organic matter. Russian Geology and Geophysics. 2021. Vol. 65, No. 8. pp. 840–858.
22. Larskaya E. S. Diagnostics and Analysis Techniques for Oil and Gas Source Beds. Moscow : Nedra, 1983. 196 p.
23. Tissot B. P., Welte D. H. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. 2nd revised and enlarged edition. Berlin : Springer-Verlag, 1984. 538 p.
24. Pairazian V. V. Petroleum geochemistry of the Timan–Pechora basin. First Break. 1993. Vol. 11, No. 7. DOI: 10.3997/1365-2397.1993013
25. Saeed S. A., Hakimi M. H., Al-Muntaser A. A., Khamieva A. N., Varfolomeev M. A. et al. Geochemical, mineralogical and petrographical characteristics of the domanik formation from north samara region in the volga-ural basin, Russia: Implication for unconventional tight oil reservoir potential. Journal of Petroleum Science and Engineering. 2023. Vol. 220. ID 111240.
26. Liang X., Jin Z., Philippov V., Obryadchikov O., Zhong D. et al. Sedimentary characteristics and evolution of Domanik facies from the Devonian–Carboniferous regression in the southern Volga–Ural Basin. Marine and Petroleum Geology. 2020. Vol. 119. ID 104438.
27. Lindquist S. J. The Timan-Pechora Basin Province of Northwest Arctic Russia: Domanik–Paleozoic Total Petroleum System : Open-File Repor t 99-50-G. Denver : U. S. Geological Survey, 1999. 40 p.
28. Averyanova O. Yu., Morariu D. Assessm ents complexity of petroleum systems hydrocarbon potential. Nefregazovaya geologiya. Teoriya i praktika. 2016. Vol. 11, No. 3. DOI: 10.17353/2070-5379/32_2016
29. Bushnev D. A., Burde lnaya N. S. Modeling of oil generation by Domanik carbonaceous shale. Petroleum Chemistry. 2013. Vol. 53, No. 3. pp. 145–151.
30. Astakhov S. M. Chemical kinetics of organic matter transformation of petroleum source rocks. Ne fregazovaya geologiya. Teoriya i praktika. 2016. Vol. 11, No. 1. DOI: 10.17353/2070-5379/5_2016
31. Vassoevich N. B. Theory of sedimentation and migration-based origination of oil (historical review and present-day situation). Izvestiya Akademii nauk SSSR. Seriya geologicheskaya. 196 7. Vol. 31, No. 11. pp. 135–156.
32. Vassoevich N. B. Formation of hydrocarbon gases during lithogenesis. Genesis of Hydrocarbon Gases and Deposit Formation : Collected Book. Moscow : Nauka, 1977. pp. 20–35.
33. Lu S., Li J., Xue Н., Chen F., Xu Q. et al. Pyrolytic gaseous hydrocarbon generation andthe kinetics of carbon isotope fractionation in representative model compounds with different chemical structures. Geochemistry, Geophysics, Geosystems. 2019. Vol. 20, Iss. 4. pp. 1773–1793.
34. Zhukov V. S., Kuzmin Y. O. Experimental evaluation of compressibility coefficients for fractures and intergranular pores of an oil and gas reservoir. Journal of Mining Institute. 2021. Vol. 251. pр. 658–666. DOI: 10.31897/PMI.2021.5.5
35. Galkin S.V., Krivoshchekov S. N., Kozyrev N. D., Kochnev A. A., Mengaliev A. G. Accounting of geomechanical layer properties in multi-layer oil field development. Journal of Mining Institute. 2020. Vol. 244. pp. 408–417.
36. Romashev A., He D., Aleksandrova T., Nikolaeva N. Technological Typomorphic Associations in Caustobiolites and Methods of Their Extraction. Metals. 2021. Vol. 1(11). рp. 1–12. DOI: 10.3390/met11010121

39. Zakharov L. А., Martyushev D. А., Ponomareva I. N. Predicting dynamic formation pressure using artificial intelligence methods. Journal of Mining Institute. 2022. Vol. 253. рp. 23–32. DOI: 10.31897/PMI.2022.11
40. Belozerov I. P., Gubaydullin M. G. Concept of technology for determining the permeability and porosity properties of terrigenous reservoirs on a digital rock sample model. Journal of Mining Institute. 2020. Vol. 244. pp. 402–407.
41. Petrakov D. G., Penkov G. M., Zolotukhin A. B. Experimental study on the effect of rock pressure on sandstone permeability. Journal of Mining Institute. 2022. Vol. 254. рp. 244–251. DOI: 10.31897/PMI.2022.24
42. Cherdantsev G. A., Zharkov A. M. Prospects for the oil and gas content of the Upper Permian deposits of the southwestern part of the Vilyui syneclise based on the analysis of sedimentary environments and geochemical conditions of oil and gas content. Journal of Mining Institute. 2021. Vol. 251. pр. 698–711. DOI: 10.31897/PMI.2021.5.9
43. Dvoynikov M. V., Leusheva E. L. Modern trends in hydrocarbon resources development. Journal of Mining Institute. 2022. Vol. 258. pp. 879–880.
44. Dvoynikov M. V., Sidorkin D. I., Yurtaev S. L., Grokhotov E. I., Ulyanov D. S. Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields. Journal of Mining Institute. 2022. Vol. 258. pр. 945–955. DOI: 10.31897/PMI.2022.55
45. Cherepovitsyn A. E., Tretyakov N. A. Development of New System for Assessing the Applicability of Digital Projects in the Oil and Gas Sector. Journal of Mining Institute. 2023. Vol. 262. pр. 628–642.

Language of full-text russian
Full content Buy
Back