Журналы →  Gornyi Zhurnal →  2024 →  №9 →  Назад

GEOLOGY, EXPLORATION AND SURVEY OF SOLD MINERALS. MINERAGENY
Название Olivine–spinel geothermometry—Indicator of formation identity of rocks and a basis for geodynamic reconstructions in Antarctica
DOI 10.17580/gzh.2024.09.12
Автор Talovina I. V., Babenko I. A., Ilalova R. K., Duryagina A. M.
Информация об авторе

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

I. V. Talovina, Head of Department, Professor, Doctor of Geological and Mineralogical Sciences, i.talovina@gmail.com
I. A. Babenko, Post-Graduate Student
R. K. Ilalova, Associate Professor, Candidate of Geological and Mineralogical Sciences

 

TU Bergakademie Freiberg Institute of Mineralogy, Freiberg, Germany
A. M. Duryagina, Candidate of Geological and Mineralogical Sciences

Реферат

The article reports studies on composition of rock-forming and accessory minerals from various mafites and ultramafites. Spotlight is on olivines and Cr spinel which are one of the first crystallization stages informing on chemical and thermodynamic characteristics of mantle sources and thermobaric regime in the course of magma generation. The temperatures of rock formation were calculated and analyzed using four classic versions of olivine–spinel geothermometer: Jackson–Irvine–Reder, Ono, Fabry and O’Neil–Wall–Ballhous–Berry–Green (O’NWBBG) for different ultramafites and mantle xenolites as the case-studies of Antarctica, Mongolia, Ural and some other regions. It is mentioned that olivine–spinel equilibrium temperatures are comparable in ophiolites and in zoned and stratified rock masses, and are higher than the temperature of mantle xenolites. It is concluded on applicability of the main versions of olivine–spinel geothermometers in calculation of temperatures in mafites and ultramafites with a view to reconstructing geodynamic formation conditions for different blocks in the Earth crust. Furthermore, the authors analyze some typomorphic indicators of a formation identity of rocks, namely, the Ni:M ratio in olivine and the ferrum content f of Cr spinel. It is found that the ratio of Ni:Mn > 2 in olivine is typical of ophiolites and mantle xenolites, and is much lower in other formations. The rocks from zoned and stratified formations feature the higher values of f (0.6–0.7) in Cr spinel, while ophiolites and mantle xenolites display the minimum values of this parameter (0.3–0.4). The results are important for better and penetrative understanding of formation and evolution of mantle systems, including their geodynamics. Such approach is crucial in investigation of inaccessible and non-outcropping areas of the Earth crust as conventional analytical techniques are inexecutable in full measure in this case.

The study was carried out under the state contract with the Ministry of Science and Higher Education of the Russian Federation, Contract No. FSRW-2024-0003. Basic and Inter-Disciplinary Research of Geological Formations at Vostok Station in Antarctica.

Ключевые слова Geothermometry, formations, ultramafites, mafites, olivine, spinel, Antarctica
Библиографический список

1. Roeder P. L., Campbell I. H., Jamieson H. E. A re-evaluation of the olivine–spinel geothermometer. Contributions to Mineralogy and Petrology. 1979. Vol. 68, Iss. 3. pp. 325–334.

2. Ono A. Fe–Mg partitioning between spinel and olivine. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists. 1983. Vol. 78, Iss. 4. pp. 115–122.
3. Jianping L., Kornprobst J., Vielzeuf D., Fabriès J. An improved experimental calibratio n of the olivine–spinel geothermometer. Chinese Journal of Geochemistry. 1995. Vol. 14, Iss. 1. pp. 68–77.
4. O’Neill H. S. C., Wood B. J. An experimental study of Fe–Mg partitioning between garnet and olivine and its calibration as a ge othermometer. Contributions to Mineralogy and Petrology. 1979. Vol. 70, Iss. 1. pp. 59–70.
5. Sergeeva A. V., Kiryukhin A. V., Usacheva O. O., Rychkova T. V ., Kartasheva E. V. et al. The impact of secondary mineral formation on Na-K-geothermometer readings: a case study for the Valley of Geysers hydrothermal system (Kronotsky State Nature Biosphere Reserve, Kamchatka). Journal of Mining Institute. 2023. Vol. 262. pp. 526–540.
6. Grikurov G. E., Leichenkov G. L., Mikhalsky E. V. Antarctic tectonic evolution in the light of modern geodynamic concepts. Structure and Evolution of the Lithosphere. Series : Russia’s Contribution to the 2007/08 International Polar Year. Moscow–Saint-Petersburg : Paulsen, 2010. pp. 89–108.
7. Jacobs J., Mikhalsky E., Henjes-Kunst F., Läufer A., Thomas R. J. et al. Neoproterozoic geodynamic evolution of easternmost Kalahari: Constraints from U–Pb–Hf–O zircon, Sm–Nd isotope and geochemical data from the Schirmacher Oasis, East Antarctica. Precambrian Research. 2020. Vol. 342. ID 105553.
8. Korago E. A., Kovaleva G. N., Schekoldin R. A., Ilin V. F., Gusev E. A. et al. Geological structure of the Novaya Zemlya Archipelago (West Russian Arctic) and peculiarities of the tectonics of the Eurasian Arctic. Geotectonics. 2022. Vol. 56, No. 2. pp. 123–156.
9. Migdisova N. A., Sushevskaya N. M., Portnyagin M. V., Shishkina T. A., Kuzmin D. V. et al. Composition of phenocrysts in lamproites of Gaussberg Volcano, East Antarctica. Geochemistry International. 2023. Vol. 61, No. 9. pp. 911–936.
10. Litvinenko V. Foreword: Sixty-year Russian history of Antarctic sub-glacial lake exploration and Arctic natural resource development. Geochemistry. 2020. Vol. 80, Iss. 3. ID 125652.
11. Gulbin Yu. L., Abdrakhmanov I. A., Gembitskaya I. M., Vasiliev E. A. Oriented microinclusions of Al–Fe–Mg–Ti oxides in quartz from metapelitic granulites of the Bunger Hills, East Antarctica. Geology of Ore Deposits. 2023. Vol. 65, No. 7. pp. 656–668.
12. Bolshunov A. V., Vasilev D. A., Dmitriev A. N., Ignatev S. A., Kadochnikov V. G. et al. Results of complex experimental studies at Vostok station in Antarctica. Journal of Mining Institute. 2023. Vol. 263. pp. 724–741.
13. Ageev A., Egorov A., Krikun N. The principal characterized features of earth’s crust within regional strike–slip zones. Advances in Raw Material Industries for Sustainable Development Goals : The Russian–German Raw Materials Forum. London : Taylor & Francis Group, 2021. pp. 78–83.
14. Khain V. E., Bozhko N. A. Historical Geotectonics. Pre-Cambrian Age. Moscow : Nedra, 1988. 382 p.
15. Chashchukhin I. S., Votyakov S. L. Spinel lherzolite of the Northern Kraka Massif (Southern Urals): Relics of the least transformed matter of the upper mantle. Doklady Earth Sciences. 2010. Vol. 431, Iss. 2. pp. 462–465.
16. Nefedov Yu., Gribanov D., Gasimov E., Peskov D., Han G. et al. Development of Achimov deposits sedimen tation model of one of the West Siberian oil and gas province fields. Reliability: Theory & Applications. 2023. Vol. 18, Special Issue 5(75). pp. 441–448.
17. Kovalev S. G., Kovalev S. S. Ti–Fe–Cr spinel s in layered (stratified) complexes of the western slope of the Southern Urals: Species diversity and formation conditions. Journal of Mining Institute. 2022. Vol. 255. pp. 476–492.
18. O’Connor C., Alexandrova T. The geological occurrence, mineralogy, and processing by flotation of platinum group minerals (PGMs) in South Africa and Russia. Minerals. 2021. Vol. 11, Iss. 1. ID 54.
19. Scoates J. S., Wall C. J. Geochronology of Layered Intrusions. Layered Intrusions. Ser.: Springer Geology. Springer : Dordrecht, 2015. pp. 3–74.
20. Smolkin V. F., Mokrushin A. V. Geochemistry of the Paleoproterozoic layered intrusions of the Monchegorsk ore area, Kola region. Trudy Fersmanovskoy nauchnoy sessii GI KNTs RAN. 2019. No. 16. pp. 544–549.
21. Biagioni C., Pasero M. The systematics of the spinel-type minerals: An overview. American Mineralogist. 2014. Vol. 99, Iss. 7. pp. 1254–1264.
22. Wu J., Liu T., Wang F. Genesis and geodynamic significance of chromitites from the Fuchuan Ophiolite, Southern China, as evidenced by trace element fingerprints of chr omite, olivine and pyroxene. Acta Geologica Sinica. 2023. Vol. 97, Iss. 1. pp. 134–148.
23. Bussolesi M., Grieco G., Cavallo A., Zaccarini F. Dif ferent tectonic evolution of fast cooling ophiolite mantles recorded by olivine–spinel geothermometry: Case studies from Iballe (Albania) and Nea Roda (Greece). Minerals. 2022. Vol. 12, Iss. 1. ID 64.
24. Sukhanova К. G., Kuznetsov А. B., Skublov S. G., Galankin a О. L. Evaluation of thermal metamorphism temperature of equilibrated ordinary chondrites. Geodynamics & Tectonophysics. 2022. Vol. 13, Iss. 2s. ID 0618.
25. Wan Z., Coogan L. A., Canil D. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. American Mineralogist. 2008. Vol. 93, Iss. 7. pp. 1142–1147.
26. Putikov O. F., Senchina N. P., Talovin a I. V., Duryagina A. M., Telegin Yu. M. et al. Geoelectrochemical detection of PGE content anomalies within the Svetlyi Bor massif (Central Urals). Russian Geology and Geophysiscs. 2017. Vol. 58, No. 7. pp. 815–821.
27. Mikhaylova Yu. A., Pakhomovskiy Ya. A., Kalashnikov A. O., Yakovenchuk V. N. Formation of layering of the Lovozero peralkaline intrusion (Kola peninsula, Russia): New data. Trudy Fersmanovskoy nauchnoy sessii GI KNTs RAN. 2022. No. 19. pp. 222–226.
28. Heinonen J. S., Jennings E. S., Riley T. R. Crystallisation temperatures of the most Mg-rich magmas of the Karoo LIP on the basis of Al-in-olivine thermometry. Chemical Geology. 2015. Vol. 411. pp. 26–35.
29. Foley S. F., Andronikov A. V., Melzer S. Petrology of ultramafic lamprophy res from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland. Mineralogy and Petrology. 2002. Vol. 74, Iss. 2-4. pp. 361–3 84.
30. Glebovitskii V. A., Nikitina L. P., Saltykova A. K., Pushkarev Yu. D., Ovchinnikov N. O. et al. Thermal and chemical heterogeneity of the upper mantle beneath the Baikal–Mongolia Territory. Petrology. 2007. Vol. 15, No. 1. pp. 58–89.
31. Stepanov S. Yu., Palamarchuk R. S., Khanin D. A., Varlamov D. A., Antonov A. V. The distribution and speciation of PGEs in chromitite from the Svetloborsky, Veresovoborsky, and Kamenushensky Clinopyroxenite–Dunite Massifs (Middle Urals). Moscow University Geology Bulletin. 2018. Vol. 73, No. 6. pp. 527–537.
32. Saveliev D. E., Makatov D. K., Rakhimov I. R., Gataullin R. A., Shilovskikh V. V. Silicates from lherzolites in the south-eastern part of the Kempirsay Massif as the source for giant chromitite deposits (the Southern Urals, Kazakhstan). Minerals. 2022. Vol. 12, Iss. 8. ID 1061.
33. Yurichev А. N. Accessory spinelides as a tool for reconstruction of thermodynamic parameters of crystallization. Rudy i metally. 2014. No. 5. pp. 32–36.
34. Chistyakov A. V., Sharkov E. V. Petrology of the Early Paleoproterozoic Burakovsky C omplex, Southern Karelia. Petrology. 2008. Vol. 16, No. 1. pp. 63–86.
35. Yakovleva A. A., Movchan I. B., Medinskaia D. K., Sadykova Z. I. Quantitative interp retations of potential fields: from parametric to geostructural recalculations. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2023. Vol. 334, No. 11. pp. 198–215.

Language of full-text русский
Полный текст статьи Получить
Назад