Журналы →  Non-ferrous Metals →  2024 →  №2 →  Назад

COMPOSITES AND MULTIPURPOSE COATINGS
Название Pt, Zr, Ni-containing carbon nanofiber composites modified by self-phosphorylating polybenzimidazole as cathode materials for hydrogen-air high-temperature polymer-electrolyte membrane fuel cell
DOI 10.17580/nfm.2024.02.05
Автор Ponomarev I. I., Skupov K. M., Vtyurina E. S., Zhigalina O. M.
Информация об авторе

A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia

I. I. Ponomarev, Doctor of Chemical Sciences, Head of Laboratory, Chief Researcher, e-mail: gagapon@ineos.ac.ru
K. M. Skupov*, PhD in Chemistry, Senior Researcher, e-mail: kskupov@ineos.ac.ru
E. S. Vtyurina, Master’s Degree in Materials Science, Junior Researcher, e-mail: ves1809@yandex.ru

 

National Research Centre “Kurchatov Institute”, Moscow, Russia
O. M. Zhigalina, Prof., Doctor of Physical-Mathematical Sciences, Leading Researcher, e-mail: zhigal@crys.ras.ru


*Correspondence author.

Реферат

High-temperature polymer-electrolyte membrane fuel cells (HT-PEMFCs) operate at 150–200 °C, making it possible to use hydrogen contaminated with carbon monoxide. However, the main drawback for their distribution is the need to improve stability of membrane-electrode assembly components, especially cathodes. The cathodes based on carbon nanofiber (CNF) mat are free-standing (self-supporting), and are prepared using the method of electrospinning from a polyacrylonitrile solution containing Zr and Ni salts, followed by the stabilization and pyrolysis steps. The composite Zr, Ni-containing Pt/CNF cathodes are obtained after Pt nanoparticle deposition on the CNF surface. A novel self-phosphorylating polybenzimidazole (PBI-6F) was deposited to the surface of Pt/CNF to improve the triple-phase boundary. Substitution of OMe-groups and hydrophobic nature of CF3-groups lead to improvements in proton conductivity and gas transport of the cathode as well as proton-conducting contacts between cathode and membrane. The materials are studied using N2 and CO2 gas adsorption, TEM, HAADF STEM. The operation of the H2/air HT-PEMFC shows that the application of the PBI-6F-covered PBI-6F/Pt/CNF cathode results in an enhancement of HT-PEMFC performance, compared with the uncovered Pt/CNF cathode, providing ~20% increase in maximum power density.

The study was financially supported by Russian Science Foundation (grant # 22-13-00065). Elemental analysis was performed with support of Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for Molecular Composition Studies of INEOS RAS. The authors would like to express their gratitude to D. N. Khme lenin and E. N. Cherkovskiy of NRC “KI” for their assistance with electron microscopy data; Yu. A. Volkova, Iv. I. Ponomarev and A. G. Buyanovskaya of INEOS RAS for their contributions to the membrane obtaining, electrospinning results and elemental analysis data; and A. D. Modestov of IPCE RAS for his assistance with electrochemistry data.

Ключевые слова Polybenzimidazole 6F, Pt nanoparticles, composite carbon nanofiber mat, self-phosphorylating polymer, Pt/CNF, HT-PEMFC, gas-diffusion electrode, carbon nanofiber, polyacrylonitrile
Библиографический список

1. Li Q., Aili D., Hjuler H. A., Jensen J. O. High Temperature Polymer Electrolyte Membrane Fuel Cells. Approaches, Status, and Perspectives. Cham: Springer, 2016. XXVI+545 p. DOI: 10.1007/978-3-319-17082-4
2. Rosli R. E., Sulong A. B., Daud W. R. W., Zulkifley M A., Husaini T., Rosli M. I., Majlan E. H., Haque M. A. A Review of High-Temperature Proton Exchange Membrane Fuel Cell (HTPEMFC) System. International Journal of Hydrogen Energy. 2017. Vol. 42. pp. 9293–9314. DOI: 10.1016/j.ijhydene.2016.06.211
3. Seselj N., Alfaro S. M., Bompolaki E., Cleemann L. N., Torres T., Azizi K., Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications. Advanced Materials. 2023. Vol. 35. 2302207. DOI: 10.1002/adma.202302207
4. Authayanum S., Im-orb K., Arpornwichnop A. A Review of the Development of High Temperature Proton Exchange Membrane Fuel Cells. Chinese Journal of Catalysis. 2015. Vol. 36. pp. 473–483. DOI: 10.1016/S1872-2067(14)60272-2
5. Rasheed R. K. A., Liao Q., Caizhi Z., S. H. Chan. A Review of the Development of High Temperature Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy. 2017. Vol. 42. pp. 3142–3165. DOI: 10.1016/j.ijhydene.2016.10.078
6. Moorthy S., Sivasubramanian G., Kannaiyan D., Deivanayagam P. Neoteric Advancements in Polybenzimidazole Based Polymer Electrolytes for High-Temperature Proton Exchange Membrane Fuel Cells – A Versatile Review. International Journal of Hydrogen Energy. 2023. Vol. 48. pp. 28103–28118. DOI: 10.1016/j.ijhydene.2023.04.005
7. Li Q., He R., Jensen J. O., Bjerrum N. J. PBI-Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration. Fuel Cells. 2004. Vol. 4. pp. 147–159. DOI: 10.1002/fuce.200400020
8. Zeis R. Materials and Characterization Techniques for High-Temperature Polymer Electrolyte Membrane Fuel Cells. Beilstein Journal of Nanotechnology. 2015. Vol. 6. pp. 68–83. DOI: 10.3762/bjnano.6.8
9. Zhou Z., Zholobko O., Wu X.-F., Aulich T., Thakare J., Hurley J. Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects. Energies. 2021. Vol. 14. 135. DOI: 10.3390/en14010135
10. Escorihuela J., Olvera-Mancilla J., Alexandrova L., del Castillo L.F., Compañ V. Polymers. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers. 2020. Vol. 12. 1861. DOI: 10.3390/polym12091861
11. Rath R., Kumar P., Unnikrishnan L., Mohanty S., Nayak S. K. Current Scenario of Poly (2,5-Benzimidazole) (ABPBI) as Prospective PEM for Application in HT-PEMFC. Polymer Review. 2019. Vol. 60. pp. 267–317. DOI: 10.1080/15583724.2019.1663211
12. Pingitore A. T., Molleo M., Schmidt T. J., Benicewicz B. C. Polybenzimidazole Fuel Cell Technology: Theory, Performance, and Applications. In: Encyclopedia of Sustainability Science and Technology (Ed. by R. Meyers). New York: Springer, 2018. pp. 1–38. DOI: 10.1007/978-1-4939-2493-6_143-3
13. Quartarone E., Angioni S., Mustarelli P. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials. 2017. Vol. 10. 687. DOI: 10.3390/ma10070687
14. Bose S., Kuila T., Nguyen T. X. H., Kim N. H., Lau K., Lee J. H. Polymer Membranes for High Temperature Proton Exchange Membrane Fuel Cell: Recent Advances and Challenges. Progress in Polymer Science. 2011. Vol. 36. pp. 813–843. DOI: 10.1016/j.progpolymsci.2011.01.003
15. Li Q., Jensen J. O., Savinell R. F., Bjerrum N. J. High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells. Progress in Polymer Science. 2009. Vol. 34. 449–477. DOI: 10.1016/j.progpolymsci.2008.12.003
16. Yaroslavtsev A. B., Stenina I. A. Current Progress in Membranes for Fuel Cells and Reverse Electrodialysis. Mendeleev Communications. 2021. Vol. 31. pp. 423–432. DOI: 10.1016/j.mencom.2021.07.001
17. Mader J., Xiao L., Schmidt T. J., Benicewicz B. C. Polybenzimidazole/Acid Complexes as High-Temperature Membranes. In: Fuel Cells II. Advances in Polymer Science, vol. 216 (Ed. by G. G. Scherer). Berlin: Springer, 2008. pp. 63–124. DOI: 10.1007/12_2007_129
18. Zucconi A., Hack J., Stocker R., Suter T. A. M., Rettie A. J. E., Brett D. J. L. Challenges and Opportunities for Characterisation of High-Temperature Polymer Electrolyte Membrane Fuel Cells: a Review. Journal of Materials Chemistry A. 2024. Vol. 12. pp. 8014–8064. DOI: 10.1039/d3ta06895a
19. Subianto S. Recent Advances in Polybenzimidazole/Phosphoric acid Membranes for High-Temperature Fuel Cells. Polymer International. 2014. Vol. 63. pp. 1134–1144. DOI: 10.1002/pi.4708
20. Li G., Kujawski W., Rynkowska E. Advancements in Proton Exchange Membranes for High-Performance High-temperature Proton Exchange Membrane Fuel Cells (HT-PEMFC). Reviews in Chemical Engineering. 2022. Vol. 38. 327. DOI: 10.1515/revce-2019-0079
21. Kalathil A., Raghavan A., Kandasubramanian B. Polymer Fuel Cell Based on Polybenzimidazole Membrane: a Review. Polymer-Plastics Technology and Materials. 2019. Vol. 58. pp. 465–497. DOI: 10.1080/03602559.2018.1482919
22. Aili D., Henkensmeier D., Martin S., Singh B., Hu Y., Jensen J. O., Cleemann L. N., Li Q. Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress. Electrochemical Energy Reviews. 2020. Vol. 3. pp. 793–845. DOI: 10.1007/s41918-020-00080-5
23. Araya S. S., Zhou F., Liso V., Sahlin S. L., Vang J. R., Thomas S., Gao X., Jeppesen C., Kær S. K. A Comprehensive Review of PBI-Based High Temperature PEM Fuel Cells. International Journal of Hydrogen Energy. 2016. Vol. 41. pp. 21310–21344. DOI: 10.1016/j.ijhydene.2016.09.024
24. Haider R., Wen Y., Ma Z.-F., Wilkinson D. P., Zhang L., Yuan X., Song S., Zhang J. High Temperature Proton Exchange Membrane Fuel Cells: Progress in Advanced Materials and Key Technologies. Chemical Society Reviews. 2021. Vol. 50. pp. 1138–1187. DOI: 10.1039/D0CS00296H
25. Wang X. X., Tan Z. H., Zeng M., Wang J. N. Carbon Nanocages: A New Support Material for Pt Catalyst with Remarkably High Durability. Scientific Reports. 2014. Vol. 4. 4437. DOI: 10.1038/srep04437

26. Shao Y., Liu J., Wang Y., Lin Y. Novel Catalyst Support Materials for PEM Fuel Cells: Current Status and Future Prospects. Journal of Materials Chemistry. 2009. Vol. 19. pp. 46–59. DOI: 10.1039/b808370c
27. Vtyurina E. S., Ponomarev I. I., Naumkin A. V., Bukalov S. S., Aysin R. R., Ponomarev I. I., Zhigalina O. M., Khmelenin D. N., Skupov K. M. Influence of the Polymer Precursor Structure on the Porosity of Carbon Nanofibers: Application as Electrode in High-Temperature Proton Exchange Membrane Fuel Cells. ACS Applied Nano Materials. 2024. Vol. 7. pp. 4313–4323. DOI: 10.1021/acsanm.3c05874
28. Skupov K. M., Ponomarev I. I., Vol’fkovich Y. M., Modestov A. D., Ponomarev Iv. I., Volkova Yu. A., Razorenov
D. Yu., Sosenkin V. E. The Effect of the Stabilization and Carbonization Temperatures on the Properties of Microporous Carbon Nanofiber Cathodes for Fuel Cells on Polybenzimidazole Membrane. Polymer Science, Series C. 2020. Vol. 62. pp. 231–237. DOI: 10.1134/S1811238220020149
29. Vtyurina E. S., Skupov K. M., Ponomarev I. I., Buyanovskaya A. G., Ponomarev Iv. I., Zhigalina O. M., Cherkovskiy E. N., Khmelenin D. N. Carbon Nanofiber Gas-Diffusion Anodes Based on a Copolymer of Acrylonitrile with Methyl Acrylate for High-Temperature Polymer-Electrolyte Membrane Fuel Cell. Protection of Metals and Physical Chemistry of Surfaces. 2024. Vol. 60. pp. 100–109. DOI: 10.1134/S207020512470151X
30. Kopec M., Lamson M., Yuan R., Tang C., Kruk M., Zhong M., Matyjaszewski K., Kowalewski T. Polyacrylonitrile-Derived Nanostructured Carbon Materials. Progress in Polymer Science. 2019. Vol. 92. pp. 89–134. DOI: 10.1016/j.progpolymsci.2019.02.003
31. Low Z.-X., Budd P. M., McKeown N. B., Patterson D. A. Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chemical Reviews. 2018. Vol. 118. pp. 5871–5911. DOI: 10.1021/acs.chemrev.7b00629
32. Dong Z., Kennedy S. J., Wu Y. Electrospinning Materials for Energy-Related Applications and Devices. Journal of Power Sources. 2011. Vol. 196. pp. 4886–4904. DOI: 10.1016/j.jpowsour.2011.01.090
33. Inagaki M., Yang Y., Kang F. Carbon Nanofibers Prepared via Electrospinning. Advanced Materials. 2012. Vol. 24. pp. 2547–2566. DOI: 10.1002/adma.201104940
34. Tenchurin T. Kh., Krasheninnikov S. N., Orekhov A. S., Chvalun S. N., Shepelev A. D., Belousov S. I., Gulyaev A. I. Rheological Features of Fiber Spinning from Polyacrylonitrile Solutions in an Electric Field. Structure and Properties. Fibre Chemistry. 2014. Vol. 46. pp. 151–160. DOI: 10.1007/s10692-014-9580-y
35. Yusof N., Ismail A.F. Post Spinning and Pyrolysis Processes of Polyacrylonitrile (PAN)-Based Carbon Fiber and Activated Carbon Fiber: A Review. Journal of Analytical and Applied Pyrolysis. 2012. Vol. 93. pp. 1–13. DOI: 10.1016/j.jaap.2011.10.001
36. Ponomarev I. I., Razorenov D. Y., Skupov K. M., Ponomarev I. I., Volkova Y. A., Lyssenko K. A., Lysova A. A., Vtyurina E. S., Buzin M. I., Klemenkova Z. S. Self-Phosphorylated Polybenzimidazole: An Environmentally Friendly and Economical Approach for Hydrogen/Air High-Temperature Polymer-Electrolyte Membrane Fuel Cells. Membranes. 2023. Vol. 13. 552. DOI: 10.3390/membranes13060552
37. Skupov K. M., Ponomarev I. I., Vtyurina E. S., Volkova Y. A., Ponomarev I. I., Zhigalina O. M., Khmelenin D. N., Cherkovskiy E. N., Modestov A. D. Proton-Conducting Polymer-Coated Carbon Nanofiber Mats for Pt-Anodes of High-Temperature Polymer-Electrolyte Membrane Fuel Cell. Membranes. 2023. Vol. 13. 479. DOI: 10.3390/membranes13050479
38. Ponomarev I. I., Volkova Y. A., Skupov K. M., Vtyurina E. S., Ponomarev I. I., Ilyin M. M., Nikiforov R. Y., Alentiev A. Y., Zhigalina O. M., Khmelenin D. N., Strelkova T. V., Modestov A. D. Unique Self-Phosphorylating Polybenzimidazole of the 6F Family for HT-PEM Fuel Cell Application. International Journal of Molecular Science. 2024. Vol. 25. 6001. DOI: 10.3390/ijms25116001
39. Rouquerol J., Rouquerol F., Sing K. S. W., Llewellyn P., Maurin G. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed. Cambridge: Academic Press, 2012. 626 p. DOI: 10.1016/C2010-0-66232-8
40. Harkins W. D., Jura G. Surfaces of Solids. XII. An Absolute Method for the Determination of the Area of a Finely Divided Crystalline Solid. Journal of the American Chemical Society. 1944. Vol. 66. pp. 1362–1366. DOI: 10.1021/ja01236a047
41. Choma J., Jaroniec M., Kloske M. Improved Pore-Size Analysis of Carbonaceous Adsorbents. Adsorption Science & Technology. 2002. Vol. 20. pp. 307–315. DOI: 10.1260/026361702760254487
42. Linares-Solano A., Stoeckli F. Commentary on the Paper “On the Adsorption Affinity Coefficient of Carbon Dioxide in Microporous Carbons” by E.S. Bickford et al. (Carbon 2004; 42: 1867–71). Carbon. 2005.Vol. 43. pp. 658–660. DOI: 10.1016/j.carbon.2004.10.007
43. Schmidt T. J., Baurmeister J. Properties of High-Temperature PEFC Celtec®-P 1000 MEAs in Start/Stop Operation Mode. Journal of Power Sources. 2008. Vol. 176. pp. 428–434. DOI: 10.1016/j.jpowsour.2007.08.055
44. Kondratenko M. S., Ponomarev I. I. Gallyamov M. O. Razorenov D. Y. Volkova Y. A., Kharitonova E. P., Khokhlov A. R. Novel Composite Zr/PBI-O-PhT Membranes for HT-PEFC Applications. Beilstein Journal of Nanotechnology. 2013. Vol. 4. pp. 481–492. DOI: 10.3762/bjnano.4.57
45. Ponomarev I. I., Skupov K. M., Modestov A. D., Lysova A. A., Ponomarev I. I., Vtyurina E.S. Cardo Polybenzimidazole (PBI-O-PhT) Based Membrane Reinforced with m-Polybenzimidazole Electrospun Nanofiber Mat for HT-PEM Fuel Cell Applications. Membranes. 2022. Vol. 12. 956. DOI: 10.3390/membranes12100956
46. Ponomarev I. I., Razorenov D. Y., Ponomarev I. I., Volkova Y. A., Skupov K. M., Lysova A. A., Yaroslavtsev A. B., Modestov A. D., Buzin M. I., Klemenkova Z. S. Polybenzimidazoles via Polyamidation: A More Environmentally Safe Process to Proton Conducting Membrane for Hydrogen HT-PEM Fuel Cell. European Polymer Journal. 2021. Vol. 156. 110613. DOI: 10.1016/j.eurpolymj.2021.110613
47. Lozano-Castello D., Cazorla-Amorós D., Linares-Solano A. Usefulness of CO2 Adsorption at 273 K for the Characterization of Porous Carbons. Carbon. 2004. Vol. 42. pp. 1233–1242. DOI: 10.1016/j.carbon.2004.01.037

Полный текст статьи Pt, Zr, Ni-containing carbon nanofiber composites modified by self-phosphorylating polybenzimidazole as cathode materials for hydrogen-air high-temperature polymer-electrolyte membrane fuel cell
Назад