Название |
The influence
of parameters of slag conditions on blast furnace smelting performance
and cast iron quality |
Информация об авторе |
National University of Science and Technology MISIS, Novotroitsk Affiliate (Novotroitsk, Russia)
A. N. Shapovalov, Cand. Eng., Associate Prof., Deputy Director on Innovations and Development, e-mail: alshapo@yandex.ru
National University of Science and Technology MISIS, Novotroitsk Affiliate (Novotroitsk, Russia)1 ; Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia)2 R. R. Dema, Dr. Eng., Associate Prof., Dept. of Machines and Technologies for Metal Processing and Machine-Building2, Prof., Dept. of Metallurgical Technologies and Equipment1, e-mail: demarr78@mail.ru
Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia) R. N. Amirov, Cand. Eng., Associate Prof., Dept. of Machines and Technologies for Metal Processing and Machine-Building O. R. Latypov, Cand. Eng., Associate Prof., Dept. of Machines and Technologies for Metal Processing and Machine-Building, e-mail: latolegraf@list.ru |
Реферат |
The analysis of production data on the operation of the blast furnace No. 2 for the period from 2021 to 2023 is carried out. The results of the influence of parameters of slag conditions on the technical and economic indicators (TEI) of blast furnace operation and the quality of cast iron are presented. It was found that when analyzing the performance indicators of the blast furnace operation and the results of desulfurization under conditions of instability of the composition of charge and slag, it is necessary to use the indicator of the total or complete slag basicity, which gives more objective results, unlike simple basicity. It is shown that the slag procedure should be characterized by a minimal basicity that ensures achievement of a specified cast iron quality, in order to achieve the best TEI of the blast furnace. To improve the conditions and results of metal desulfurization, it is advisable to adjust the slag composition towards increasing the MgO content to 9–10 % while reducing the level of simple slag basicity to 0.95 units and maintaining the value of the total basicity at the level of 1.16–1.18 units. In addition, it is expedient to ensure that the Al2O3/SiO2 ratio is maintained at the level of 0.2–0.25 units. When maintaining the proposed slag conditions, in addition to improving the conditions and results of desulfurization, a decrease in slag amount can be expected. This, together with the improvement of the slag physical properties (viscosity and fluidity), will reduce coke consumption and provide conditions for increasing the blast furnace productivity.
The work was carried out with the financial support of the Ministry of Higher Education of Russian Federation (project No. FZRU-2023-0008) and the Russian Science Foundation, grant No. 23-79-30015 (Agreement dated 13.04.2023, http://rscf.ru/project/23-79-30015/). |
Библиографический список |
1. Kurunov I. F. The blast-furnace process – is there any alternative? Metallurgist. 2012. Vol. 56 (3–4). pp. 241–246. 2. Smith M. Blast furnace ironmaking: view on future developments. Ironmaking & Steelmaking. 2015. Vol. 42 (10). pp. 734–742. DOI: 10.1179/0301923315Z.000000000422 3. Lüngen H. B., Schmöle P. Comparative operating parameters of blast furnaces worldwide. Chernye Metally. 2019. No. 3. pp. 13–18. 4. Li X.-L., Sun Wenqiang, Zhao Liang, Cai J.-J. Energy consumption and smoke and dust emissions analysis of typical iron and steel production enterprise. Journal of Northwestern University (Natural Science). 2016. Vol. 37. pp. 352–356. DOI: 10.3969/j.issn.1005–3026.2016.03.011 5. Xu H. L., Pan G. Y., Shao Y. J. et al. Analysis of energy consumption evaluation indicator for iron and steel production. Energy Metall Ind. 2017. Vol. 36 (2). pp. 3–7. 6. Ariyama T., Sato M., Nouchi T., Takahashi K. Evolution of Blast Furnace Process toward Reductant Flexibility and Carbon Dioxide Mitigation in Steel Works. ISIJ International. 2016. Vol. 56. No. 10, pp. 1681–1696. 7. Babich A. Blast furnace injection for minimizing the coke rate and CO2 emissions. Ironmaking & Steelmaking. 2021. Vol. 48 (6). pp. 728–741. 8. Zhuogang Pang, Jiajia Bu, Yaqiang Yuan et al. The Low-Carbon Production of Iron and Steel Industry Transition Process in China. Steel Research International. 2024. Vol. 95. No. 3. pp. 2300500. DOI: 10.1002/srin.202300500 9. Perpiñán J., Peña B., Bailera M. et al. Integration of carbon capture technologies in blast furnace based steel making: A comprehensive and systematic review. Fuel. 2023. Vol. 336. pp. 127074. 10. Tovarovskii I. G., Merkulov A. E. Blast-furnace smelting with coal-dust injection. Steel in Translation. 2012. Vol. 42. pp. 28–40. DOI: 10.3103/S0967091212010202 11. Wang P., Li J. X., Zhou L. Y., Long H. M. Theoretical and experimental investigation of oxygen blast furnace process with high injection of hydrogenous fuel. Ironmaking & Steelmaking. 2013. Vol. 40 (4). pp. 312–317. 12. Takahashi K., Nouchi T., Sato M., Ariyama T. Perspective on Progressive Development of Oxygen Blast Furnace for Energy Saving. ISIJ International. 2015. Vol. 55. Iss. 9. pp. 1866–1875. 13. Yu-zhu Pan, Hai-bin Zuo, Jing-song Wang et al. Review on improving gas permeability of blast furnace. Journal of Iron and Steel Research International. 2020. Vol. 27. No. 2. p. 121. 14. Rahmatmand B., Tahmasebi A., Lomas H. et al. A technical review on coke rate and quality in low-carbon blast furnace ironmaking. Fuel. 2023. Vol. 336. p. 127077. 15. Schott R.. Experience of Kuettner in the field of new blast furnace injection technologies. Chernye Metally. 2016. No. 8. pp. 15–24. 16. Xiaodong Ma, Mao Chen, Jinming Zhu, Haifa Xu, Geoff Wang, Baojun Zhao. Properties of Low-MgO Ironmaking Blast Furnace Slags. ISIJ International. 2018. Vol. 58. Iss. 8. pp. 1402–1405. 17. Shatokha V. Slag parameters and sulphur partition in blast furnace hearth: Ukrainian case and international comparison. Ironmaking & Steelmaking. 2022. Vol. 49 (1). pp. 60–69. DOI: 10.1080/03019233.2021.1966265 18. Sahoo M., Hazra S., Kumar B. et al. Optimisation of slag composition (MgO and Basicity) to operate 20 % alumina in Blast Furnace slag. Mineral Processing and Extractive Metallurgy. 2024. Vol. 133 (1–2). pp. 42–48. DOI: 10.1177/25726641241250146 19. Shapovalov A. N., Kropotov V. K. Optimum sulfur content of pig iron for desulfurization outside the furnace. Metallurgist. 1997. Vol. 41. p. 384. 20. Ma X., Chen M., Xu H., Zhu J., Wang G., Zhao B. Sulphide capacity of CaO–SiO2–Al2O3–MgO system relevant to low MgO blast furnace slags. ISIJ International. 2016. Vol. 12. pp. 2126–2131. 21. Condo A. F. T., Qifeng S., Sichen D. Sulfide capacities in the Al2O3–CaO–MgO–SiO2 system. Steel Research Int. 2018. Vol. 89. No. 8. 1800061. DOI: 10.1002/srin.201800061 22. Iron metallurgy: textbook for universities. 3rd edition revised and supplemented. Edited by Yusfin Yu. S. Moscow: IKTs “Akademkniga”. 2004. 774 p. 23. Fengman Shen, Xin Jiang, Gangsheng Wu, Guo Wei, Xiaogang Li, Yansong Shen. Proper MgO Addition in Blast Furnace Operation. ISIJ International. 2006. Vol. 46. Iss. 1. pp. 65–69. 24. Li T., Zhao C., Sun C. et al. Roles of MgO and Al2O3 in Viscous and Structural Behavior of Blast Furnace Primary Slag with C/S = 1.4. Metall. Mater. Trans. B. 51. 2020. pp. 2724–2734. DOI: 10.1007/s11663-020-01980-z 25. Yao L., Ren S., Wang X. et al. Effect of Al2O3, MgO, and CaO/SiO2 on viscosity of high alumina blast furnace slag. Steel Research International. 2016. Vol. 87. No. 2. pp. 241–249. 26. Ovchinnikova E. V., Gorbunov V. B., Shapovalov A. N., Maistrenko N. A., Bersenev I. S. Magnesia Sinter with Flux Based on Magnesium Silicate. Steel in Translation. 2018. Vol. 48. No. 1. pp. 34–38. 27. Shapovalov A. N.,Ovchinnikova E. V., Maistrenko N. A. Effect of the type of magnesia materials on the sintering process indicators at JSC «Ural Steel». Chernye Metally. 2018. No. 11. pp. 38–42. 28. Shapovalov A. N., Ovchinnikova E. V., Gorbunov V. B., Dema R. R. Kalugina O. B. The effect of the composition of magnesia flux on the sinter structure and properties. IOP Conf. Series: Materials Science and Engineering. 2019. Vol. 625. 012009. 29. Sunahara K., Nakano K., Hoshi M., Inada T., Komatsu S., Yamamoto T. Effect of high Al2O3 slag on the blast furnace operations. ISIJ International. 2008. Vol. 48. pp. 3420–429. 30. Jinfa Liao, Gele Qing, Baojun Zhao. Phase Equilibria Studies in the CaO–MgO–Al2O3–SiO2 System with Al2O3/SiO2 Weight Ratio of 0.4. Metals. 2023. Vol. 13 (2). p. 224. DOI: 10.3390/met13020224 |