Журналы →  Tsvetnye Metally →  2024 →  №12 →  Назад

BENEFICIATION
Название Studying the parameters of acceleration of irregularly shaped solid particles by laminar gas flow in the acceleration channel of the slit section
DOI 10.17580/tsm.2024.12.02
Автор Tyukin A. P.
Информация об авторе

Monchegorsk, Russia

A. P. Tyukin, Candidate of Technical Sciences, e-mail: TukinAP@yandex.ru

Реферат

The article provides the relationship between the operating parameters of gasdynamic separation of granular mixtures by laminar gas flow (density, viscosity, absolute static pressure, temperature, linear velocity of the working gas, length, width, height of the acceleration channel, density, diameter, sphericity coefficient and effective coefficient of particles friction of each of the separated components against the wall of the acceleration channel) on the separation efficiency indicators (average particle velocities of the separated components and their ratio, the standard deviation of the particle velocity of each of the separated components). It is shown that the lower the particle velocity of each of the separated components, the higher the efficiency of gas dynamic separation. At the same time, in the case when, after exiting the acceleration channel, the particles are captured quickly enough and before that move along ballistic trajectories through a rarefied medium, the higher the separation efficiency, the higher the ratio of the average velocity of light particles to the average velocity of heavy ones. On the contrary, in the case where long-term movement of particles along a ballistic trajectory through a dense medium is assumed, the separation efficiency increases with a decrease in the velocity of light particles and an increase in the velocity of heavy particles. Due to the fact that it is impossible to give heavy particles a velocity exceeding the velocity of light particles in the acceleration channel, it must be stated that in this case the separation efficiency increases with a decrease in the ratio of the average velocity of light particles to the average velocity of heavy ones. An analysis is given of which relationships of these values are direct and which are inverse. General recommendations on setting the operating parameters for various special cases of gas dynamic separation are given.

Ключевые слова Enrichment, gas dynamic separation, bulk, granular materials, acceleration, laminar, flow, gas, research
Библиографический список

1. Kuzmin A. V., Morozov V. V. Enrichment of the Erchim-Than coal mine by pneumatic separation method. Mining informational and analytical bulletin. 2008. No. 11. pp. 191–198.
2. Fogelev V. A. The use of air classification in mineral processing. Zolotodobycha. 2007. No. 101.
3. Parshin O. P. Studying the benefication process on pneumatic separators: thesis. … of Candidate of Technical Sciences. 1969. pp. 32.
4. Avdohin V. M., Morozov V. V., Kuzmin A. V., Bojko D. YU., Kalina A. V. Vacuum-pneumatic separation of hard-to-enrich coals. Gornyi Zhurnal. 2008. No.12. pp. 56–60.
5. M. D. Barskij, N. S. Larkov, A. V. Govorov. Pneumatic classifier. Author’s certificate USSR, No. 753491; No. 2652660/29-03. Applied: 31.07.1980. Published: 07.08.1980.
6. N. I. Vicenko. A device for classifying bulk materials. Author’s certificate USSR, No. 973191, IPC В 07 В 4/00; No. 3231282/29-03. Applied: 05.01.1981. Published: 15.11.1982.
7. V. P. Lyalyuk, V. G. Grigoreva. Centrifugal separation device. Author’s certificate USSR, No. 956061, IPC В 07 В 7/083; No. 4397929/29-03. Applied: 16.02.1988. Published: 30.05.1990.
8. A. K. Brovcyn, V. P. Zvonarev. Installation for aerodynamic enrichment of bulk materials. Author’s certificate USSR, No. 1639778, IPC В 07 В 9/00; No. 4705955/03. Applied: 03.05.1989. Published: 23.02.1992.
9. A. K. Brovcyn, Yu. I. Matveev, A. M. Kokovin. Unit for dynamic air-dry enrichment of dispersed materials. Author’s certificate USSR, No. 1688940, IPC В 07 В 7/04; No. 4056083/03. Applied: 16.04.1986. Published: 23.01.1993.
10. Sumita Hideichiro, Kaya Takahito. Mineral sorting apparatus. Patent JP, No. 003175367, 20020368603. Applied: 19.02.2002. Publublished: 24.06.2003.
11. Tyukin A. P. Development of a combined method for the granular materials enrichment using aerodynamic and shock separation technologies: thesis. … of Candidate of Technical Sciences. MISIS, 2013. pp. 151.
12. Tyukin A. P., Yushina T. I. Mathematical modelling of gas-dynamic separation processes. Tsvetnye Metally. 2020. No. 7. pp. 9–17.
13. Tyukin A. P. Improved deterministic physico-mathematical model of gas-dynamic separation of granular materials. Tsvetnye Metally. 2023. No. 5. pp. 8–13.
14. Stromberg A. G., Semchenko D. P. Physical chemistry. Мoscow : Vysshaya shkola, 2009. pp. 527.
15. Genick Bar–Meir, Ph. D. Fundamentals of compressible fluid mechanics. 2022. DOI: 0.5281.
16. Seagraves R. Innovative device offers solution to waterless mineral processing. Canadian Mining Journal. 2014.
17. Gibney E. How to build a Moon base. Researchers are ramping up plans for living on the Moon. Nature. 2018.
18. Rongfei Cong, Hao Tian, Jie Wen, Zhijian Ding. The research on the influence of multi-physical effect on the dynamic stability of high speed vehicle. Highlights in Science Engineering and Technology. 2023. Vol. 77. DOI: 10.54097/hset.v.77i.14362
19. Smits J. A, Dussauge J.-P. Turbulent shear layers in supersonic flow. Birkhаuser, 2006.
20. Lihua Shao, Yichen Wei, Yuhe Wang. Numerical modeling on high-temperature and high-pressure gas condensate recovery considering the viscosity variation and dynamic relative permeability. Computational Geosciences. 2023. DOI: 10.1007/s10596-023-10258-7
21. Mahmoud Emam, Han Chen, Shi W Dong, Ling Zhou. An ASABE Meeting Presentation ROCKY DEM-CFD simulation for Realistic Granular Flow in an Aerodynamic separating device. ASABE Meeting conference materials (USA). 2019.
22. Kasatkin A. G. The main processes and devices of chemical technology. Мoscow : Khimiya, 1971. pp. 753.

Language of full-text русский
Полный текст статьи Получить
Назад