Журналы →  Tsvetnye Metally →  2024 →  №12 →  Назад

RARE METALS, SEMICONDUCTORS
Название Complex processing of eudialyte concentrate
DOI 10.17580/tsm.2024.12.05
Автор Chanturiya V. A., Minenko V. G., Ryzanceva M. V., Samusev A. L.
Информация об авторе

Institute of Problems of Integrated Subsoil Development named after Academician N. V. Melnikov of the Russian Academy of Sciences, Moscow, Russia

V. A. Chanturiya, Chief Scientific Officer, Academician RAS, Doctor of Technical Sciences, e-mail: vchan@mail.ru
V. G. Minenko, Leading Researcher, Doctor of Technical Sciences, e-mail: vladi200@mail.ru
M. V. Ryzanceva, Senior Researcher, Candidate of Technical Sciences, e-mail: ryzanceva@mail.ru
A. L. Samusev, Senior Researcher, Candidate of Technical Sciences, e-mail: andrey63vzm@mail.ru

Реферат

A flow chart for processing eudialyte concentrate has been developed, ensuring the total extraction of zirconium — 89.4%, rare earth elements — 82%. At the same time, the loss of zirconium with leaching cake is 9%, rare earth elements — 16%. Low losses of zirconium (1.6%) and rare earth elements (2%) during the processing of the productive solution of nitric acid leaching are achieved by organizing the washing and processing of silica gel, the sequential extraction of zirconium and rare earth elements from the productive solution by chemical precipitation, reagent regeneration and closing of water circuits. Washing and processing of silica gel into sodium metasilicate with the associated production of zirconium silicate and rare earth elements returned to the leaching process reduce the loss of valuable components by 43%. Regeneration of calcium carbonate with the associated production of ammonium nitrate ensures the processing of liquid salt waste (calcium nitrate solutions) and reduction of rare earth elements losses by 11.3%. The circulation of waste solutions and washing waters increases the concentration of valuable components in the productive solution by 5–6% and reduces the consumption of nitric acid by 12.2%. According to preliminary estimates, the gross profit per 1 ton of processed concentrate will amount to approximately 128 thousand rubles. An alternative sorption option for processing an acid leaching solution of eudialyte concentrate for the extraction of rare earth elements and zirconium has been investigated. The possibility of dividing rare earth elements into light and heavy subgroups using synthetic sorption materials has been experimentally substantiated: in the case of using vinyl pyridine resin VP-3Ap, the extraction of light rare earth elements into resin is 68–93%, while 80–92% of rare earth elements belonging to the heavy group pass into eluate.

Ключевые слова Eudialyte concentrate, nitric acid leaching, extraction, zirconium, rare earth elements, chemical precipitation, silica gel, sorption, synthetic resin, reagent regeneration
Библиографический список

1. Yushina T. I., Petrov I. M., Cherny S. A., Petrova A. I. Rare-earth metal ore processing technologies when developing new deposits. Obogashchenie Rud. 2020. No. 6. pp. 47–53.
2. Liu S.-L., Fan H.-R., Liu X., Meng J. et al. Global rare earth elements projects: New developments and supply chains. Ore Geology Reviews. 2023. Vol. 157. 105428.
3. Karamalidis A. K., Eggert R. Rare earth elements: sustainable recovery, processing, and purification. American Geophysical Union, Special Publications. 2024. 400 p.
4. Brahim J. A., Hak S. A., Achiou B., Boulif R. et al. Kinetics and mechanisms of leaching of rare earth elements from secondary resources. Minerals Engineering. 2022. Vol. 177. 107351.
5. Nechaev A. V., Polyakov E. G., Kardapolov A. V., Koparulina E. S. Loparite and eudialyte in the prospects for the development of the rare metal industry in Russia. Razvedka i ohrana nedr. 2021. No. 5. pp. 51–56.
6. Nechaev A. V., Polyakov E. G. Eudialyte. Moscow : Metallurgizdat, 2024. 204 p.
7. Rascvetaeva R. K., Aksenov S. M. 200 anniversary of eudialyte: discovery and study history. Priroda. 2019. No. 11. pp. 73–76.
8. Silin I., Gursel D., Buchter C., Weitkamper L. et al. Recovery of catapleiite and eudialyte from non-magnetic fraction of eudialyte ore processing of norra karr deposit. Minerals. 2022. Vol. 12. 19.
9. Nechaev A. V., Polyakov E. G. Problems of eudialyte chemical technology and ways to solve them. Khimicheskaya tekhnologiya. 2024. Vol. 25, No. 7. pp. 259–268.
10. Majorov D. V., Maslova M. V. Study of the kinetics of the eudialyte acid decomposition. Khimicheskaya tekhnologiya. 2023. Vol. 24, No. 5. pp. 177–188.
11. Safiulina A. M., Lizunov A. V., Semenov A. A., Baulin D. V. et al. Recovery of uranium, thorium, and other rare metals from eudialyte concentrate by a binary extractant based on 1,5- bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyl trioctylammonium nitrate. Minerals. 2022. Vol. 12. 1469.
12. E. V. Bogatyreva, A. G. Ermilov, A. V. Chub, O. V. Hohlova. Eudialyte concentrate opening method. Patent RF, No. 2677571, C1. Applied: 14.05.2018. Published: 17.01.2019.
13. M. G. Shtuca, M. Yu. Zubkova, A. G. Ziganshin, E. S. Koparulina et al. Eudialyte concentrate processing method. Patent RF, No. 2742330, C1. Applied: 18.08.2020. Published: 04.02.2021.
14. Ma Y., Stopic S., Wang X., Forsberg K., Friedrich B. Basic sulfate precipitation of zirconium from sulfuric acid leach solution. Metals. 2020. Vol. 10. DOI: 10.3390/met10081099
15. Silin I., Dertmann C., Cvetkoviс V. S., Stopic S., Friedrich B. Prevention of silica gel formation for eudialyte study using new digestion reactor. Minerals. 2024. Vol. 14. DOI: 10.3390/min14020124
16. Lokshin E. P., Tareeva O. A., Drogobuzhskaya S. V. Sorption conversion of eudialyte concentrate in sulphuric acid medium. Chemistry for Sustainable Development. 2022. Vol. 30, No. 3. pp. 274–280.
17. Chanturiya V. A., Minenko V. G., Samusev A. L., Ryazantseva M. V., Koporulina E. V. Combined physicochemical and energy methods to improve the recovery of rare earth elements from eudialyte concentrate. Minerals. 2023. Vol. 13. DOI: 10.3390/min13030414
18. Zaharov V. I., Kislyh V. V., Chekmarev A. M., Masloboev V. A. et al. Opening of eudialyte concentrate with nitric acid. Khimiya i tekhnologiya redkih elementov i mineralnogo syrya. Apatity : KNC RAN, 1986. pp. 5–7.
19. Sharifian S., Wang N.-H. L. Resin-based approaches for selective extraction and purification of rare earth elements: A comprehensive review. Journal of Environmental Chemical Engineering. 2024. Vol. 12, Iss. 2. 112402.
20. Mikhaylenko M., Davis B. et al. Development and screening of resins to recover REE and scandium from different sources. Extraction 2018, The Minerals, Metals & Materials Series, Springer, Cham, 2018. pp. 2113–2122. DOI: 10.1007/978-3-319-95022-8_177
21. GOST 11125–84. Nitric acid of high purity. Specifications. Introduced: 01.01.1986.
22. GOST 10091–75. Monobasic 1-aqueous calcium phosphate. Specifications. Introduced: 01.07.1976.
23. GOST 4530–76. Reagents. Calcium carbonate. Specifications. Introduced: 01.07.1977.
24. GOST 3770–75. Reagents. Ammonium carbonate. Specifications. Introduced: 01.07.1976.
25. GOST 83–79. Reagents. Sodium carbonate. Specifications. Introduced: 01.01.1980.
26. GOST 4328–77. Reagents. Sodium hydroxide. Specifications. Introduced: 01.07.1978.
27. Chanturia V. A., Samusev A. L., Minenko V. G., Kozhevnikov G. A. Rare metal and rare earth recovery from silica gel-eudialyte concentrate leaching product. Journal of Mining Science. 2021. Vol. 57, No. 6. pp. 1006–1013.
28. GOST 2–2013. Ammonium nitrate. Specifications. Introduced: 01.07.2014.
29. GOST 19433–88. Dangerous goods. Classification and marking. Introduced: 01.01.1990.
30. Korolchenko A. Ya. Fire and explosion hazard of substances and materials, and means of extinguishing them: handbook. Мoscow : Associaciya Pozhnauka, 2000.
31. Lebedev V. N., Lokshin E. P., Masloboev V. A., Dozorova R. B., Mihlin E. B. Raw materials sources of rare earth metals in Russia and the problems of their involvement in processing. Tsvetnye Metally. 1997. No. 8. pp. 46–51.

Language of full-text русский
Полный текст статьи Получить
Назад