ArticleAuthorData |
Geophysical Center of the Russian Academy of Sciences, Moscow, Russia1 ; NUST MISIS, Moscow, Russia2
A. I. Manevich1,2, Researcher, a.manevich@gcras.ru D. Zh. Akmatov1,2, Researcher, Candidate of Engineering Sciences
Geophysical Center of the Russian Academy of Sciences, Moscow, Russia1 ; Schmidt Institute of Physics of the Earth, Moscow, Russia2
R. V. Shevchuk1,2, Researcher, Candidate of Engineering Sciences
Geophysical Center of the Russian Academy of Sciences
B. V. Dzeranov, Senior Researcher, Candidate of Geological and Mineralogical Sciences |
Abstract |
As a case-study of the Republic of North Ossetia-Alania, the article describes a procedure of collection, processing and integration of data from different sources such as international catalogs of earthquakes, geodetic measurements from global satellite navigation systems, as well as field measurements of fractures and faults. The Republic of North Ossetia-Alania, situated in the north of the central part of the Greater Caucasus, is a region of high seismicity and complex geological structure. This area accommodates many infrastructures related to hazardous production facilities: hydropower plants, trans-Caucasian arterial roads, mines and tourism–recreation facilities. For the safe construction and operation of such objects, it is required, among other things, to comprehend the stress–strain behavior of the Earth’s crust. One of the prime sources of information abound the regional effective stresses are the maps of their orientations. The data acquisition, processing and integration was performed using a geoinformation system. As a result of the data processing, a pilot regional map of orientations of the principal effective compression stresses was plotted. Such maps are a critical tool for determining boundary conditions in numerical stress–strain modeling, which the modeling accuracy and reliability in assessment of rock mass stability and seismic hazard. Moreover, the maps are important in engineering assessment of stability of infrastructures such as hydropower plants, bridges, mines and traffic arteries. The study was supported by the Russian Science Foundation, Grant “Systematic Assessment of Seismic Hazard in the Center of the Greater Caucasus, Ossetia Sector”, Project No. 23-17-00176. |
References |
1. Eremenko V. A., Kosyreva M. A., Vysotin N. G., Khazhy-ylai Ch. V. Geomechanical justification of room-and-pillar dimensions for rock salt and polymineral salt mining. Gornyi Zhurnal. 2021. No. 1. pp. 37–43. 2. Eremenko V. A., Khazhyylai Ch. V., Umarov A. R., Lagutin D. V. Quantitative assessment of rock mass stress–strain behavior at Severomuysky Tunnel. Gornyi Zhurnal. 2023. No. 1. pp. 58–64. 3. Ismail-Zadeh A., Adamia S., Chabukiani A., Chelidze T., Cloetingh S. et al. Geodynamics, seismicity, and seismic hazards of the Caucasus. Earth-Science Reviews. 2020. Vol. 207. ID 103222. 4. Vorobieva I. A., Dzeboev B. A., Dzeranov B. V., Gvishiani A. D., Zaalishvili V. B. et al. Integrated Earthquake Catalog of the Ossetian Sector of the Greater Caucasus. Applied Sciences. 2024. Vol. 14, Iss. 1. ID 172. 5. Stogny V. V., Stogny G. A. Deep structure and rheological stratification of the Earth’s crust for the Greater Caucasus Central segment. Geologiya i Geofizika Yuga Rossii. 2024. Vol. 14, No. 2. pp. 6–20. 6. Stogny V. V., Stogny G. A., Ponomareva N. L. Seismotectonics of the southern part of the Greater Caucasus Central segment. Geologiya i Geofizika Yuga Rossii. 2023. Vol. 13, No. 1. pp. 76–95. 7. Heidbach O., Rajabi M., Cui X., Fuchs K., Müller B. et al. The World Stress Map database release 2016 : Crustal stress pattern across scales. Tectonophysics. 2018. Vol. 744. pp. 484–498. 8. Artemieva I. M. The Lithosphere: An Interdisciplinary Approach. Cambridge : Cambridge University Press, 2011. 794 p. 9. Kreemer C., Blewitt G., Klein E. C. A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems. 2014. Vol. 15, Iss. 10. pp. 3849–3889. 10. Trabant C., Hutko A. R., Bahavar M., Karstens R., Ahern T. et al. Data Products at the IRIS DMC: Stepping Stones for Research and Other Applications. Seismological Research Letters. 2012. Vol. 83, No. 5. pp. 846–854. 11. Milanovskiy E. E. Neotectonics of the Caucasus. Moscow : Nedra, 1968. 483 p. 12. Reilinger R., McClusky S., Vernant P., Lawrence S., Ergintav S. et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth. 2006. Vol. 111, Iss. B5. DOI: 10.1029/2005JB004051 13. Lukk A. A., Shevchenko V. I. Seismicity, tectonics, and GPS geodynamics of the Caucasus. Izvestiya, Physics of the Solid Earth. 2019. Vol. 55, No. 4. pp. 626–648. 14. Philip H., Cisternas A., Gvishiani A., Gorshkov A. The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics. 1989. Vol. 161, Iss. 1-2. pp. 1–21. 15. Tatarinov V. N., Kaftan V. I., Manevich A. I., Dzeboev B. A., Dzeranov B. V. et al. Neotectonic evolution of the Caucasus: Recent vertical movements and mechanism of crustal deformation. Izvestiya, Physics of the Solid Earth. 2024. Vol. 60, No. 4. pp. 585–603. 16. Rogozhin E. A., Gorbatikov A. V., Stepanova M. Yu., Ovsyuchenko M. Yu., Andreeva N. V. et al. The structural framework and recent geodynamics of the Greater Caucasus meganticlinorium in the light of new data on its deep structure. Geotectonics. 2015. Vol. 49, No. 2. pp. 123–134. 17. Arefiev S. S., Rogozhin E. A., Bykova V. V., Dorbath C. Deep structure of the Racha earthquake source zone from seismic tomography data. Izvestiya, Physics of the Solid Earth. 2006. Vol. 42, No. 1. pp. 27–40. 18. Tikhotsky S. A., Fokin I. V., Shur D. Yu., Arefiev S. S. Structure of the source area of the Racha earthquake (1991) from local seismic tomography with adaptive media parameterization. Geophysical Research. 2011. Vol. 12, No. 1. pp. 5–32. 19. Ovsyuchenko A. N., Marakhanov A. V., Novikov S. S., Rogozhin E. A. Zone of the Vladikavkaz active fault S.K. in the area of the Republic of North Ossetia-Alania. Vestnik Vladikavkazskogo nauchnogo tsentra. 2008. Vol. 8, No. 3. pp. 44–56. 20. Drobyshev V. N., Khubaev Kh. M., Torchinov Kh.-M. Z. Studies on geodynamics in the Ossetian part of the Central Caucasus based on the satellite geodesy and regional seismicity data. Vestnik Vladikavkazskogo nauchnogo tsentra. 2021. Vol. 21, No. 1. pp. 61–70. 21. Gushchenko O. I. Orienations of shearing tectonic displacements and their tectonophysical interpretation in reconstruction of paleostresses. Doklady of the Academy of Sciences of the USSR. Earth Science Sections. 1973. Vol. 210, No. 2. pp. 331–334. 22. Nikolaev P. N. The T ectonic Dynamics Analysis Procedure. Moscow : Nedra, 1992. 295 p. 23. Darbinyan T. P., Tsymbalov A. A., Zubov V. P., Kolganov A. V. Impact of rock mass jointing on dilution of disseminated copper–nickel ore in Oktyabrsky Mine. Gornyi Zhurnal. 2023. No. 6. pp. 19–25. 24. Gzovskiy M. V. Basic Tectonophysics. Moscow : Nauka, 1975. 536 p. 25. Esikov N. P. Modern Movements of Ground Surface from the Perspective of Theory of Deformation. Novosibirsk : Nauka, 1991. 226 p. 26. Manevich A. I., Shevchuk R. V., Losev I. V., Kaftan V. I., Urmanov D. I. et al. Deformation analysis and visualization from GNSS observations in Python 3 and QGIS 3. Geodezia i Kartografia. 2023. Vol. 84, No. 12. pp. 17–26. 27. Akmatov D. Zh., Manevich A. I., Tatarinov V. N., Shevchuk R. V., Zabrodin S. M. Assessment of rock massif sustainability in the area of the underground research laborator y (Nizhnekanskii Massif, Enisei site). Journal of Mining Institute. 2024. Vol. 266. pp. 167–178. 28. Franzosi F., Crippa C., Derro n M.-H., Jaboyedoff M., Agliardi F. Slope-scale remote mapping of rock mass fracturing by modeling cooling trends derived from infrared thermography. Remote Sensing. 2023. Vol. 15, Iss. 18. ID 4525. |