Journals →  Tsvetnye Metally →  2025 →  #1 →  Back

HEAVY NON-FERROUS METALS
ArticleName Processing of sodium antimonate to produce commercial grade antimony
DOI 10.17580/tsm.2025.01.03
ArticleAuthor Timofeev К. L., Кorolev А. А., Maltsew G. I., Voinkov R. S.
ArticleAuthorData

JSC Uralelektromed, Verkhnyaya Pyshma, Russia1 ; Non-governmental educational private institution of higher education UMMC Technical University, Verkhnyaya Pyshma, Russia2
К. L. Timofeev, Head of Manufacturing Engineering Office1, Associate Professor of the Department of Metallurgy2, Doctor of Technical Sciences, e-mail: K.Timofeev@uralcopper.com

R. S. Voinkov, Head of the Research Center1, Associate Professor of the Department of Metallurgy2, Candidate of Technical Sciences, e-mail: R.Voinkov@uralcopper.com


JSC Uralelektromed,Verkhnyaya Pyshma, Russia

А. А. Кorolev, Chief Engineer, Candidate of Technical Sciences, e-mail: A.Korolev@uralcopper.com


Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
G. I. Maltsew, Senior Researcher, Doctor of Technical Sciences, е-mail: maltsewg@yandex.ru

Abstract

The process was investigated and a search was performed for optimal parameters for processing antimony concentrate — sodium antimonate composition, %: 43–45 Sb; 6–7 Na; 1–2 Pb; 0.2–1.0 As; 0.2–0.4 Sn; 0.1–0.2 S; 0.08–0.11 Fe; 0.01–0.02 Cu, Zn, Bi; (19–50)·10–4 Ag, (0.4–0.5)·10–4 Au, for the production of commercial grade antimony in relation to the technological infrastructure of pyrometallurgical production of lead. The optimal composition of the charge for melting antimony concentrate has been determined, %: 100 of sodium antimonate; 9 of coke, which provides the maximum (metallic)/minimum (slag) phase yield (40–45%)/(29–45%), respectively. The use of fluxes is not recommended for melting antimony concentrate; the process is ensured by the presence of sodium salts in the antimonate and soda formed in the slag. By refining of rough antimony with phosphorus-containing fluxes (20–40% of a mixture of sodium dihydrogen phosphate NA2PO4 and phosphoric acid H3PO4) metal of Su1grade in terms of the content of all impurity elements was produced. The disadvantage of using the mixture is the complexity of its preparation, which involves high-temperature (350 oC) anhydrification in an aggressive environment, and high costs of phosphoric acid, which limits the refining. The preliminary technical and economic calculation of the processing of antimony concentrate with the refining of rough antimony showed low profitability of its production due to the high specific consumption and cost of phosphorus-containing fluxes. An alternative to this technology is the use of fractional vacuum distillation in the purification of antimony from lead. A detailed study of the vacuum distillation process will be carried out in subsequent works.

keywords Concentrate, antimony, lead, melting, coke, refining, fluxes, metal, slag, economic effect
References

1. Grinvud N., Ernsho A. Chemistry of the elements: in 2 volumes. Vol. 1. Мoscow : Laboratoriya znaniy, 2022. 607 p.
2. Fancello D., Dore E., Medas D., Rigonat N. et al. Antimony contamination sources and alteration pathways of Sb mineral phases in an abandoned mining area: The role of secondary mopungite [NaSb(OH)6]. Applied Geochemistry. 2023. Vol. 156. 105764. DOI: 10.1016/j.apgeochem.2023.105764
3. Zanlang Tang, Xincun Tang, Haonan Liu, Zeyu Xiao. A clean process for recovering antimony from arsenic-bearing crystals and immobilizing arsenic as scorodite. Separation and Purification Technology. 2022. Vol. 295. 121276. DOI: 10.1016/j.seppur.2022.121276
4. Zanlang Tang, Xincun Ta ng, Zeyu Xiao, Haonan Liu. A novel approach to synthesizing sodium antimonate and recovering lead and zinc from arsenic-bearing antimony white. Minerals Engineering. 2023. Vol. 192. 108008. DOI: 10.1016/j.mineng.2023.108008
5. Dembele S., Akcil A., Panda S. Technological trends, emerging applications and metallurgical strategies in antimony recovery from stibnite. Minerals Engineering. 2022. Vol. 175. 107304. DOI: 10.1016/j.mineng.2021.107304
6. Ling H., Blanpain B., Guo M., Malfliet A. Characterization of antimony-containing metallurgical residues for antimony recovery. Journal of Cleaner Production. 2021. Vol. 327. 129491. DOI: 10.1016/j.jclepro.2021.129491
7. Ke Wang, Qin-meng Wang, Yuan-lin Chen, Zhong-chen Li, Xue-yi Guo. Antimony and arsenic substance flow analysis in antimony pyrometallurgical process. Transactions of Nonferrous Metals Society of China. 2023. Vol. 33, Iss. 7. pp. 2216–2230. DOI: 10.1016/S1003-6326(23)66254-5
8. Longgang Ye, Zhen Ouyang, Yifeng Chen, Yongming Chen, Li Xiao. Sulfur fixation and reduction roasting of stibnite for clean extraction of antimony by a combined metallurgy and beneficiation process. Minerals Engineering. 2019. Vol. 144. 106049. DOI: 10.1016/j.mineng.2019.106049
9. Wei Gao, Wen Ni, Yuying Zhang, Yunyun Li et al. Investigation into the semi-dynamic leaching characteristics of arsenic and antimony from solidified/stabilized tailings using metallurgical slag-based binders. Journal of Hazardous Materials. 2020. Vol. 381. 120992. DOI: 10.1016/j.jhazmat.2019.120992
10. Zhu Xiongjin, Liu Chenhui, Wang Yongli, Wang Fang et al. Reduction mechanism and optimization of prepare metallic antimony through direct microwave carbothermal reduction of antimony oxide concentrate. Journal of Materials Research and Technology. 2022. Vol. 18. pp. 882–895. DOI: 10.1016/j.jmrt.2022.03.024
11. Dousova B., Lhotka M., Filip J., Kolousek D. Removal of arsenate and antimonate by acid-treated Fe-rich clays. Journal of Hazardous Materials. 2018. Vol. 357. pp. 440–448. DOI: 10.1016/j.jhazmat.2018.06.028
12. Hongping Chen, Jing Li, Yulu Ai, Yufei Jia et al. Resource utilization of field acid mine drainage: Formation of layered double hydroxides, its removal capacity and mechanism for antimony. Separation and Purification Technology. 2024. Vol. 337. 126401. DOI: 10.2139/ssrn.4639081
13. Yunxuan Hu, Shuangyu Zhang, Chenghui Luo, Lei Wan et al. Enhanced removal of Sb(V) from aqueous solutions using layered double hydroxide modified with sodium dodecyl sulfate. Journal of Environmental Chemical Engineering. 2022. Vol. 10, Iss. 3. 107776. DOI: 10.1016/j.jece.2022.107776
14. Jian Liu, Chenhui Liu, Yan Hong, Libo Zhang. Basic study on microwave carbon-thermal reduction senarmontite (Sb2O3) to produce antimony: Hightemperature dielectric properties and a microwave reduction mechanism. Powder Technology. 2021. Vol. 389. pp. 482–492. DOI: 10.1016/j.powtec.2021.05.048
15. Morozov Iu. G., Belousova O. V., Safonov A. V., Kuznetsov M. V. Roomtemperature aging and low-temperature experiments of ferromagnetic Sb/Sb2O3 composite nanoparticles. Materials Science and Engineering: B. 2023. Vol. 288. 116193. DOI: 10.1016/j.mseb.2022.116193
16. Zhen Ouyang, Longgang Ye, Chaobo Tang, Yifeng Chen. Phase and morphology transformations in sulfur-fixing and reduction roasting of antimony sulfide. Metals. 2019. Vol. 9, Iss. 1. pp. 79–90. DOI: 10.3390/met9010079
17. Mingxing Huang, Zhongchen Li, Qinmeng Wang, Xueyi Guo, Wei Li. Antimony and gold substance flows analysis of pyrometallurgical process for antimony-gold concentrates. Journal of Cleaner Production. 2023. Vol. 420. 138385. DOI: 10.1016/j.jclepro.2023.138385
18. Schlesinger M. E., Sole K. C., Davenport W. G., Alvear Flores G. R. F. Chapter 12 – Fire refining (S and O removal) and anode casting. Extractive Metallurgy of Copper (Sixth Edition). 2022. pp. 313–329. DOI: 10.1016/B978-0-12-821875-4.00012-2
19. Lin Zheng, Lei Zhang, Yi Zhou, Yan-rong Sun et al. New approach to predict impurity concentration in high-purity antimony metal prepared by vacuum distillation. Vacuum. 2024. Vol. 226. 113285. DOI: 10.1016/j.vacuum.2024.113285
20. Díaz E., Maldonado Calvo J. A., Gallardo J. M., Paúl A. Extraction of antimony from a hydrochloric acid side stream of copper electro-refining by hydrolysis. Hydrometallurgy. 2023. Vol. 219. 106076. DOI: 10.1016/j.hydromet.2023.106076
21. Verbruggen F., Prévoteau A., Bonin L., Marcoen K. et al. Electrochemical codeposition of copper-antimony and interactions with electrolyte additives: Towards the use of electronic waste for sustainable copper electrometallurgy. Hydrometallurgy. 2022. Vol. 211. 105886. DOI: 10.1016/j.hydromet.2022.105886
22. Chaosong Meng, Huan Yang, Xiaohui Wei, Changyi Xu et al. A novel process for directional impurity removal and preparation of front-end highpurity antimony from crude antimony. Vacuum. 2024. Vol. 219. 112736. DOI: 10.1016/j.vacuum.2023.112736
23. Walis L., Rowinska L., Panczyk E. Evaluation of the efficiency of the processes of purification of antimony to semiconductor grade purity. Warszawa : Institute of Nuclear Chemistry and Technology Department of Nuclear Methods of Material Engineering, 1992. 25 p.
24. Niu Shuai, Senk D. G., Bührig-Polaczek A., Tacke K. H. Effect of mechanical vibration on ingot solidification : thesis. Aachen, 2019.
25. Ling Meng, Shen-Gen Zhang, De-An Pan, Bin Li et al. Antimony recovery from SbCl5 acid solution by hydrolysis and aging. Rare Metals. 2015. Vol. 34, Iss. 6. pp. 436–439. DOI: 10.1007/s12598-015-0480-y
26. Appleton Q., Bernander L., Olofsson G. A calorimetric and PMR study of protonation reactions in an inert solvent : The interaction between some weak organic bases and HCl – SbCl5 in 1,2-dichloroethane solution. Tetrahedron. 1971. Vol. 27, Iss. 23. pp. 5921–5931. DOI: 10.1016/S0040-4020(01)91756-9
27. Przeslawski J., Piecha-Bisiorek А., Jakubas R. Specific heat anomaly in ferroelectric: Bis(imidazolium) pentachloroantimonate(III) (C3N2H5)2[SbCl5]. Journal of Molecular Structure. 2016. Vol. 1110. pp. 97–101. DOI: 10.1016/j.molstruc.2016.01.030
28. GOST 1089–82. Antimony. Specifications. Introduced: 01.01.1983.

Language of full-text russian
Full content Buy
Back