Journals →  Tsvetnye Metally →  2025 →  #1 →  Back

COMPOSITES AND MULTIPURPOSE COATINGS
ArticleName Composite polymer-containing coatings on aluminum alloy AMg3
DOI 10.17580/tsm.2025.01.07
ArticleAuthor Egorkin V. S., Vyaliy I. Е., Sinebryuhov S. L., Gnedenkov S. V.
ArticleAuthorData

Institute of Chemistry of Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia

V. S. Egorkin, Senior Researcher, Head of Laboratory of Electrochemical Processes, e-mail: egorkin@ich.dvo.ru
I. Е. Vyaliy, Researcher of Laboratory of Nonstationary Surface Processes
S. L. Sinebryuhov, Head of Laboratory of Nonstationary Surface Processes
S. V. Gnedenkov, Director, Head of Department of Electrochemical Systems and Surface Modification Processes

Abstract

The morphology, hydrophobicity, electrochemical and mechanical properties of composite coatings (CC) obtained on AMg3 aluminum alloy samples were investigated. An oxide coating formed on the sample surface by plasma electrolytic oxidation (PEO) in an electrolyte containing 20 g/l potassium tartrate and 0.6 g/l sodium fluoride was used as the basis for applying a polymer layer. Methods for controlled changes in the surface relief of the CС are proposed, which make it possible to achieve values of the contact angle of the test liquid droplet, characterizing the formed CC as superhydrophobic. The first method was the application of a suspension containing a 6% solution of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone and microparticles of superdispersed polytetrafluoroethylene (SPTFE) by air spraying. The second method was implemented by spraying the same polymer mixture followed by air spraying of dry PTFE powder with particle size ~50 nm in the form of agglomerate with a size from 250 nm to ~2 micron, which promotes the formation of a multimodal surface relief of the PVDF:SPTFE-layer and, as a consequence, reducing the area of contact of the corrosive environment with the surface of the sample due to the implementation of a heterogeneous wetting mode. Using the potentiodynamic polarization method in a 3.5% NaCl solution, it was established that for a sample with a composite coating formed using PTFE powder, the corrosion current density is more than five orders of magnitude lower (Ic = 8.3·10–14 A/cm2) than the value of this parameter for PEO-processed alloy (I= 2.1·10–8 A/cm2). When a drop of a corrosive solution was in contact with the surface of the coating for 24 hours, stable values of the contact angle (167.3 ± 1.0)о and rolling angle (4.0 ± 0.8)° were recorded on the aluminum alloy sample. As a result of tribological testing of this coating, a significant reduction in the friction coefficient (μ = 0.02) and a decrease in wear rate by 2 orders of magnitude of 2.1·10–5 mm3/(N·m) was established, compared to the PEO-layer (μ = 0.43; 1.1·10–3 mm3/(N·m)).
The article was prepared using the results of work carried out with the financial support of the Russian Science Foundation (project No. 23-23-00372 “Protective composite coating on aluminum alloys used in marine conditions”).

keywords Fluminium alloy, plasma electrolytic oxidation, composite coating, wettability, polyvinylidene fluoride, polytetrafluoroethylene, corrosion, tribology
References

1. Maroofi A., Navab Safa N., G homi H. Atmospheric air plasma jet for improvement of paint adhesion to aluminium surface in industrial applications. Int. J. Adhes. Adhes. 2020. Vol. 98. DOI: 10.1016/j.ijadhadh.2020.102554
2. Gaydukova A. M., Nazarova D. Yu., Konkova T. V., Stoyanova A. D. Determining the influence of parameters of electrochemical polishing of aluminum alloys on roughness and surface reflectivity. Tsvetnye Metally. 2024. No. 8. pp. 40–47.
3. Egorkin V. S., Vyalyi I. E., Izotov N. V., Minaev A. N. et al. Corrosion properties of amg3 aluminum alloy treated by short-pulse plasma electrolytic oxidation in marine conditions. Marine Intellectual Technologies. 2021. No. 4. pp. 117–121. DOI: 10.37220/MIT.2021.54.4.041
4. Kuznetsov A. O., Oglodkov M. S., Klimkina A. A. The influence of chemical composition on structure and properties of Al – Mg – Si alloy. Trudy VIAM. 2018. No. 7. pp. 3–9.
5. Achyuth K., Patel M., Sangral S., Jayaprakash M. Fretting wear degradation behavior of Al – Si – Ni based cast Aluminum alloy under different environment. Mater. Today Proc. 2019. Vol. 15. pp. 103–108. DOI: 10.1016/j.matpr.2019.05.031
6. Yang X., Chen L., Jin X., Du J., Xue W. Influence of temperature on tribological properties of microarc oxidation coating on 7075 aluminium alloy at 25 oC–300 oC. Ceram. Int. 2019. Vol. 45. pp. 12312–12318. DOI: 10.1016/j.ceramint.2019.03.146
7. Egorkin V. S., Medvedev I. M., Sinebryukhov S. L., Vyaliy I. E. et al. Atmospheric and Marine Corrosion of PEO and Composite Coatings Obtained on Al – Cu – Mg Aluminum Alloy. Materials (Basel). 2020. Vol. 13. DOI: 10.3390/ma13122739
8. Sundararajan M., Devarajan M., Jaafar M. Investigation of surface and mechanical properties of anodic aluminium oxide (AAO) developed on Al substrate for an electronic package enclosure. Surf. Coatings Technol. 2020. Vol. 401. DOI: 10.1016/j.surfcoat.2020.126273
9. Díaz B., Figueroa R., Nóvoa X. R., Pérez C. et al. Effect of substrate microstructure on corrosion resistance of cast and forged anodised 6082 Al alloy. Surf. Coatings Technol. 2024. Vol. 481. DOI: 10.1016/j.surfcoat.2024.130614
10. Yang H., Gao Y., Qin W., Li Y. Microstructure and corrosion behavior of electroless Ni – P on sprayed Al – Ce coating of 3003 aluminum alloy. Surf. Coatings Technol. 2015. Vol. 281. pp. 176–183. DOI: 10.1016/j.surfcoat.2015.10.001
11. Zhang T., Zhai H., Li W., Hong H., Li Y. XRD and EBSD evaluation on deposition behavior and microstructure characteristic of HVOF sprayed 304SS coating on aluminum substrate. Surf. Coatings Technol. 2025. Vol. 496. DOI: 10.1016/j.surfcoat.2024.131614
12. Kovaleva M. G., Arseenko M. YU., Tyurin YU. N., Kolisnichenko O. V. Titanium powder coatings on aluminum. Alternative energy and ecology. 2011. No. 6. pp. 15–20.
13. Woo Yang J., Park H., Hwan Chun H., Ceccio S. L. et al. Development and performance at high Reynolds number of a skin-friction reducing marine paint using polymer additives. Ocean Eng. 2014. Vol. 84. pp. 183–193. DOI: 10.1016/j.oceaneng.2014.04.009
14. Elhalawany N., Saleeb M. M., Zahran M. K. Novel anticorrosive emulsiontype paints containing organic/inorganic nanohybrid particles. Prog. Org. Coatings. 2014. Vol. 77. pp. 548–556. DOI: 10.1016/j.porgcoat.2013.11.019
15. Proença C. S., Pereira A. M., Pigliaru L., Rohr T. et al. Alternative chemical conversion pre-treatment for aeronautical aluminium alloy: characterisation and anticorrosion performance. CEAS Sp. J. 2023. Vol. 15. pp. 265–280. DOI: 10.1007/s12567-022-00459-8
16. Kosenko A., Kolomeichenko A. V., Kuznetsov Y. A., Titov N. V. et al. Investigation of coating thickness obtained by plasma electrolytic oxidation on aluminium alloys in electrolytes of type “КOH-H3BO3”. J. Phys. Conf. Ser. 2018. Vol. 1058. DOI: 10.1088/1742-6596/1058/1/012065
17. Egorkin V. S., Gnedenkov S. V., Sinebryukhov S. L., Vyaliy I. E. et al. Increasing thickness and protective properties of PEO-coatings on aluminum alloy. Surf. Coatings Technol. 2018. Vol. 334. pp. 29–42. DOI: 10.1016/j.surfcoat.2017.11.025
18. Liu Y.-F., Liskiewicz T., Yerokhin A., Korenyi-Both A. et al. Fretting wear behavior of duplex PEO/chameleon coating on Al alloy. Surf. Coatings Technol. 2018. Vol. 352. pp. 238–246. DOI: 10.1016/j.surfcoat.2018.07.100
19. Rodriguez L., Paris J.-Y., Denape J., Delbé K. Micro-arcs oxidation layer formation on aluminium and coatings tribological properties—А review. Coatings. 2023. Vol. 13. DOI: 10.3390/coatings13020373
20. Shim H.-E., Lee B.-M., Lim D.-H., Nam Y.-R. et al. A comparative study of gamma-ray irradiation-induced oxidation: polyethylene, poly (vinylidene fluoride), and polytetrafluoroethylene. Polymers (Basel). 2022. Vol. 14. DOI: 10.3390/polym14214570
21. Mashtalyar D. V., Nadaraia K. V., Imshenetskiy I. M., Belov E. A. et al. Composite coatings of AMg3 alloy formed by a combination of plasma electrolytic oxidation and fluoropolymer spraying. Molecules. 2023. Vol. 28. DOI: 10.3390/molecules28020465
22. Egorkin V. S., Vyaliy I. E., Gnedenkov A. S., Kharchenko U. V. et al. Corrosion properties of the composite coatings formed on PEO pretreated AlMg3 aluminum alloy by dip-coating in polyvinylidene fluoride-polytetrafluoroethylene suspension. Polymers (Basel). 2024. Vol. 16. DOI: 10.3390/polym16202945
23. Lu C., Feng X., Yang J., Jia J. et al. Influence of surface microstructure on tribological properties of PEO-PTFE coating formed on aluminum alloy. Surf. Coatings Technol. 2019. Vol. 364. pp. 127–134. DOI: 10.1016/j.surfcoat.2019.02.064
24. Meng Y., Gao Y., Li J. et al. Preparation and characterization of cross-linked waterborne acrylic /PTFE composite coating with good hydrophobicity and anticorrosion properties. Colloids Surfaces A Physicochem. Eng. Asp. 2022. Vol. 653. DOI: 10.1016/j.colsurfa.2022.129872
25. Egorkin V. S., Mashtalyar D. V., Gnedenkov A. S., Filonina V. S. et al. Icephobic performance of combined fluorine-containing composite layers on al-mg-mn–si alloy surface. Polymers (Basel). 2021. Vol. 13. DOI: 10.3390/polym13213827
26. Tsvetnikov A. K. Thermogradient method of synthesis of nano- and microdisperse fluorocarbon materials. Properties and applications. Vestnik of Far Eastern Branch of Russian Academy of Sciences. 2009. No. 2. pp. 18–22.
27. Radwan A. B., Mohamed A. M. A., Abdullah A. M., Al-Maadeed M. A. Corrosion protection of electrospun PVDF–ZnO superhydrophobic coating. Surf. Coatings Technol. 2016. Vol. 289. pp. 136–143. DOI: 10.1016/j.surfcoat.2015.12.087
28. GOST 4784–2019. Aluminium and wrought aluminium alloys. Grades. Introduced: 01.09.2019.
29. Drop Shape Analyzer DSA100B. — URL: https://www.kruss-scientific.com/en/products-services/products/dsa100b (дата обращения: 10.12.2024).
30. Wang P., Li C., Zhang D. Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening. J. Mater. Sci. Technol. 2022. Vol. 129. pp. 40–69. DOI: 10.1016/j.jmst.2022.01.045
31. GOST 11629–75. Plastics. Method for determination of friction coefficient. Introduced: 01.01.1977.
32. Murzin S. P., Balyakin V. B., Gachot C., Fomchenkov S. A. et al. Ultraviolet nanosecond laser treatment to reduce the friction coefficient of silicon carbide ceramics. Appl. Sci. 2021. Vol. 11. DOI: 10.3390/app112411906

Language of full-text russian
Full content Buy
Back