Journals →  Tsvetnye Metally →  2025 →  #8 →  Back

BENEFICIATION
ArticleName The role of physical sorption in increasing the extraction and selectivity of the useful component in foam flotation
DOI 10.17580/tsm.2025.08.01
ArticleAuthor Kondratyev S. A., Gavrilova T. G.
ArticleAuthorData

N. A. Chinakal Institute of Mining SB RAS, Novosibirsk, Russia

S. A. Kondratyev, Head of the Laboratory of Mineral Processing and Technological Ecology, Doctor of Technical Sciences, e-mail: kondr@misd.ru
T. G. Gavrilova, Junior Researcher at the Laboratory of Mineral Processing and Technological Ecology, e-mail: gavrilova.t.g@mail.ru

Abstract

The article deals with the issues of increasing the extraction and selectivity of extraction of a useful component in flotation. The influence of different forms of ionogenic collector sorption on the foam flotation process is demonstrated. The relationship between the extraction of the target mineral and the quality of the flotation concentrate is revealed. The difference in the selective-collecting properties of short- and long-chain oxyhydryl collectors, as well as shortchain sulfhydryl collectors: dithiophosphates, xanthogenates, and dithiocarbamates is explained. Within the framework of the mechanisms of operation of chemically and physically sorbed collectors in the elementary act of flotation, an interpretation is given to the increase in the selectivity of the extraction of the target mineral while reducing their consumption. It is demonstrated that the choice of a collector for the flotation of minerals with increased or decreased hydrophobicity depends on a shift in the balance of forces of the chemical or physical forms of sorption of the collector or its derivative forms acting during the formation of the flotation complex. The bala nce shifts towards increasing the strength of the physical form of sorption for minerals with increased hydrophobicity. Minerals with reduced hydrophobicity require collectors with higher chemical bond energy with the mineral. A method based on the mechanism of operation of a physically sorbed collector is proposed. The method improves the quality of a flotation concentrate by combining ionogenic and nonionic or ionogenic collectors: anionic and cationic. It is demonstrated that the required balance of forces will be determined by the physical and chemical properties of the collectors included in the composition, the surface activity with respect to the gas–liquid interface and the reactivity, characterized by the equilibrium constant of reversible processes. The article gives practical recommendations for choosing a collector flotation reagent or combinations of collectors that are included in the composition.
The work was carried out within the framework of the research project (state registration number 121051900145-1).

keywords Flotation, extraction, selectivity, concentrate quality, oxyhydryl and sulfhydryl collecting reagents, reagent composition, induction time, reagent surface activity
References

1. Urbina R. H. Recent developments and advances in formulations and applications of chemical reagents used in froth flotation. Mineral Processing & Extractive Metall. Rev. 2003. Vol. 24. pp. 139–182.
2. Fuerstenau D. W., Hanson J. S. The electrochemical and flotation behavior of chalcocite and mixed oxide / sulfide copper minerals. International Journal of Mineral Processing. 1991. Vol. 33. pp. 33–47.
3. Pradip. Scientific and technological challenges in mineral processing. Mineral Processing and Extractive Metallurgy Review. 1992. Vol. 10. pp. 121–137.

4. Nagaraj D. R., Day A., Gorken A. Nonsulfide minerals flotation: an overview. Advances in Flotation Technology. eds. B. K. Parekh, J. D. Miller ; SME, 1999. pp. 245–256.
5. Abramov A. A. The role of collector sorption forms in the elementary act of flotation. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2005. No. 1. pp. 96–108.
6. Wills B. A., Napier-Munn T. Mineral processing technology. An introduction to the practical aspects of ore treatment and mineral. 7th ed. Amsterdam : Elsevier Science & Technology Books, 2006. 408 p.
7. Lynch A. J., Johnson N. W., Manlapig E. V., Thorne C. G. Mineral and coal flotation circuits-their simulation and control. Amsterdam : Elsevier, 1981. 291 p.
8. Kondratiev S. A. The collective force and selectivity of the flotation reagent. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2021. No. 3. pp. 133–147.
9. Sutherland K. L., Wark I. W. Principles of flotation. Melbourne, Australia : Austr. Inst. Min. Metall., 1955. 489 p.
10. Klassen V. I., Tikhonov S. A. The effect of sodium oleate on the flotation properties of the surface of air bubbles. Tsvetnye Metally. 1960. No. 10. pp. 4–8.
11. Wark E., Wark I. Influence of micelle formation on flotation. Nature. 1939. Vol. 143. pp. 856.
12. Mielczarski J. A., Cases J. M., Bouquet E., Barres O., Delon J. F. Nature and structure of adsorption layer on apatite contacted with oleate solution. 1. Adsorption and Fourier transform infrared reflection studies. Langmuir. 1993. Vol. 9. pp. 2370–2382.
13. Theander K., Pugh R. J. The influence of pH and temperature on the equilibrium and dynamic surface tension of aqueous solutions of sodium oleate. Journal of Colloid and Interface Science. 2001. Vol. 239. pp. 209–216.
14. Taguta J., O’Connor C. T., McFadzean B. The effect of the alkyl chain length and ligand type of thiol collectors on the heat of adsorption and floatability of sulphide minerals. Minerals Engineering. 2017. Vol. 110. pp. 145–152.
15. Polkin S. I. Enrichment of ores and placers of rare and precious metals. – 2nd ed., revised and add. M. : Nedra, 1987. 428 p.
16. Pugh R., Stenius P. Solution chemistry studies and flotation behaviour of apatite, calcite and fluorite minerals with sodium oleate collector. International Journal of Mineral Processing. 1985. Vol. 15. pp. 193–218.
17. Somasundaran P. The role of ionomolecular surfactant complexes in Flotation. International Journal of Mineral Processing. 1976. Vol. 3. pp. 35–40.
18. Yu F., Wang Y., Zhang L., Zhu G. Role of oleic acid ionic-molecular complexes in the flotation of spodumene. Minerals Engineering. 2015. Vol. 71. pp. 7–12.
19. Zhou F., Yan C., Wang H., Sun Q. et al. Flotation behavior of four C18 hydroxamic acids as collectors of rhodochrosite. Minerals Engineering. 2015. Vol. 78. pp. 15–20.
20. Bagci E., Ekmekci Z., Bradshaw D. Adsorption behaviour of xanthate and dithiophosphinate from their mixtures on chalcopyrite. Minerals Engineering. 2007. Vol. 20. pp. 1047–1053.
21. Bradshaw D. J. Synergistic effects between thiol collectors used in the flotation of pyrite : Ph. D. thesis. University of Cape Town, 1997.
22. Nagaraj D. R. Reagents in Mineral Technology. N. Y. : Marcel Dekker Inc., 1988. pp. 257–334.
23. McFadzean B., Castelyn D. G., O’Connor C. T. The effect of mixed thiol collectors on the flotation of galena. Minerals Engineering. 2012. Vol. 36–38. pp. 211–218.
24. Hangone G., Bradshaw D., Ekmekci Z. Flotation of a copper sulphide ore from Okiep using thiol collectors and their mixtures. Journal of the Southern African Institute of Mining and Metallurgy. 2005. Vol. 105. pp. 199–206.
25 Kondratiev S. A. Approaches to the selection of flotation reagents-collectors. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2022. No. 5. pp. 109–124.
26. Chanturia V. A., Vigdergauz V. E. Electrochemistry of sulfides. Theory and practice of flotation, Moscow, St. Petersburg, 1993. 206 p.
27. Rao S. R., Finch J. A. Base metal oxide flotation using long chain xanthates. Int. J. Miner. Process. 2003. Vol. 69. pp. 251–258.
28. Allison S. A., Goold L. A., Nicol M. J., Granville A. A Determination various solution, products of the products of reaction between sulfide minerals and aqueous xanthate and a correlation of the with electrode rest potentials. Metallurgical Transactions. 1972. Vol. 3. pp. 2613–2618.
29. Pritzker M. D., Yoon R. H. Thermodynamic calculations on sulfide flotation systems: I. Galena-ethyl xanthate system in the absence of metastable species. Int. Journal of Mineral Processing. 1984. Vol. 12. pp. 95–125.
30. Lippinen J. O., Basilio C. I., Yoon R. H. In-situ FTIR study of ethyl xanthate adsorption on sulfide minerals under conditions of controlled potential. Int. Journal of Mineral Processing. 1989. Vol. 26. pp. 259–274.
31. Cases J. M., De Donato P. FTIR analysis of sulphide mineral surfaces before and after collection: galena. International Journal of Mineral Processing. 1991. Vol. 33. pp. 49–65.
32. Nowak P. Xanthate adsorption at PbS surfaces: molecular model and thermodynamic description. Colloids and surfaces A: Physicochem. Eng. Aspects. 1993. Vol. 76. pp. 65–72.
33. Kondratiev S. A., Moshkin N. P., Konovalov I. A. Assessment of the collecting capacity of xanthogenate forms easily desorbed from the mineral surface. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2015. No. 4. pp. 164–173.
34. Kondratiev S. A., Konovalov I. A. Influence of the physical form of collector sorption on galena flotation by xanthogenate in the presence of Pb2+ ions. Fiziko-tekhnicheskie problemy pererabotki poleznykh iskopaemykh. 2023. No. 4. pp. 119–129.
35. Rashchi F., Sui C., Finch J. A. Sphalerite activation and surface Pb ion concentration. Int. J. Miner. Process. 2002. Vol. 67. pp. 43–58.
36. Basilio C. I., Kartio I. J., Yoon R.-H. Lead activation of sphalerite during galena flotation. Miner. Eng. 1996. Vol. 9, No. 8. pp. 869–879.
37. Wang X., Forssberg E., Bolin N. J. The aqueous and surface chemistry of activation in the flotation of sulphide minerals — A Review. Part II: A Surface precipitation model. Mineral Processing and Extractive Metallurgy Review. 1989. Vol. 4. pp. 167–199.
38. Houot R., Ravenau P. Activation of sphalerite flotation in the presence of lead ions. International Journal of Mineral Processing. 1992. Vol. 35. pp. 253–271.
39. Goryachev E. B., Shekhirev D. V., Zhao Hai Yaa, Naing Lin U. Assessment of the flotation activity of thiol collectors based on the analysis of kinetic curves of pyrite flotation. Fiziko-tekhnicheskie problemy pererabotki poleznykh iskopaemykh. 2024. No. 6. pp. 168–174.
40. Pienaar D. The synergistic interaction between dithiophosphate and frothers at the air-water and mineral-water interface pyrite : Ph. D. thesis. Faculty of Engineering and built environment University of Cape Town, 2021. 179 p.
41. Kloppers L., Maree W., Oyekola O., and Hangone G. Froth flotation of Merensky Reef platimum bearing ore using mixtures of SIBX with a dithiophosphate and a dithiocarbamate. Miner. Eng. 2016. Vol. 87. pp. 54–58.
42. Manono M. S., Matibidi K., Corin K. C., Thubakgale C. K. et al. Specific ion effects on the behavior of mixtures of sodium iso-butyl xanthate and sodium diethyl dithiophosphate during the flotation of a Cu – Ni – PGM ore: effects of CaCl2 and NaCl. Environmental sciences proceedings. 2021. Vol. 6. DOI: 10.3390/iecms2021-10632
43. Von Rybinski W. and Schwuger M. J. Adsorption of surfactant mixtures in froth flotation. Langmuir, 1986, Vol. 2, Iss. 5. pp. 639–643.
44. Bai Y., Xu M., Wen W., Zhu S. et al. Synergistic mechanism of dodecylamine/octanol mixtures enhancing lepidolite flotation from the self-aggregation behaviors at the air/liquid interface. Physicochemical Problems of Mineral Processing. 2023. Vol. 59, Iss. 6. 176510.
45. Wiertel-Pochopien A., Batys P., Zawala J., Kowalczuk P. B. Synergistic effect of binary surfactant mixtures in two-phase and three-phase systems. The Journal of Physical Chemistry B. 2021. Vol. 125, Iss. 15. pp. 3855–3866.
46. Zou S., Wang S., Ma X., Zhong H. Underlying synergistic collection mechanism of an emerging mixed reagent scheme in chalcopyrite flotation. Journal of Molecular Liquids. 2022. Vol. 364. pp. 119948.
47. Kondratiev S. A., Semyanova D. V. Development of a method for selecting a combination of collectors to obtain a synergetic effect in flotation. Fizikotekhnicheskie problemy pererabotki poleznykh iskopaemykh. 2024. No. 6. pp. 148–159.
48. Tian J., Xu L., Deng W., Jiang H. et al. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chemical Engineering Science. 2017. Vol. 164. pp. 99–107.
49. Gao Z., Bai D., Sun W., Cao X., Hu Y. Selective flotation of scheelite from calcite and fluorite using a collector mixture. Minerals Engineering. 2015. Vol. 72. pp. 23–26.
50. Alexandrova L., Hanumantha Rao K., Forsberg K. S. E., Grigorov L., Pugh R. J. The influence of mixed cationic–anionic surfactants on the threephase contact parameters in silica–solution systems. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2011. Vol. 373. pp. 145–151.
51. Karimian A., Rezaei B., Masoumi A. The effect of mixed collectors in the rougher flotation of subgun copper. Life Sci. J. 2013. Vol. 10. pp. 268–272.
52. Lotter N. O., Bradshaw D. J. The formulation and use of mixed collectors in sulphide flotation. Miner. Eng. 2010. Vol. 23. pp. 945–951.
53. Plaksin I. N., Zaitseva S. P. Scientific reports of A. A. Skochinsky Institute of Mining, USSR Academy of Sciences, Moscow, 1960, No. 6, pp. 15–20.
54. Konovalov I. A., Kondratiev S. A. Flotation activity of xanthogenic acid salts. Fiziko-tekhnicheskie problemy pererabotki poleznykh iskopaemykh. 2020. No. 1. pp. 114–123.
55. Abramov A. A. Requirements to the choice and designing of selective reagents-collectors. Part 1. Theoretical principles for the choice of selective reagents-collectors. Tsvetnye Metally. 2012. No. 4. pp. 17–20.

Language of full-text russian
Full content Buy
Back