Журналы →  Tsvetnye Metally →  2025 →  №8 →  Назад

COMPOSITES AND MULTIPURPOSE COATINGS
Название The effect of lithium on structure formation during crystallization of cast aluminum matrix composite materials
DOI 10.17580/tsm.2025.08.05
Автор Deev V. B., Prusov E. S., Ri E. Kh., Shunchi Mei
Информация об авторе

Hubei Province State Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, China1 ; Zhejiang Wenyuan Intelligent Technology Co., Xichang, China2 ; Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletov, Vladimir, Russia3

V. B. Deev, Professor1, 2; Chief Researcher3, Doctor of Technical Sciences, Professor, e-mail: deev.vb@mail.ru

 

Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletov, Vladimir, Russia.
E. S. Prusov, Professor of the Department of “Technologies of Functional and Structural Materials”3, Doctor of Technical Sciences, Associate Professor, e-mail: eprusov@mail.ru


Pacific State University, Khabarovsk, Russia
E. Kh. Ri, Head of the Higher School of Industrial Engineering of the Polytechnic Institute4, Doctor of Technical Sciences, Professor, e-mail: erikri999@mail.ru

 

Hubei Province State Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, China

Shunchi Mei, Director, PhD, Professor, e-mail: meishunqi@vip.sina.com

Реферат

The article presents the results of the study of the structure of cast aluminum matrix composite materials reinforced with Mg2Si particles (15 and 25% (mass.) and modified with lithium (from 0.05 to 0.3% (mass.)). The effect of lithium on the crystallization process, dispersion, morphology, and particle distribution of the reinforcing phase is studied by metallographic analysis and thermodynamic modeling. It is found that the addition of lithium leads to a significant reduction in the size of Mg2Si particles. In the range of 0.05–0.15% (mass.) Li, the proportion of Mg2Si particles in the 1200×970 μm image area increases slightly. However, if the modifier content is increased from 0.15 to 0.2% (mass.) an almost 4.5-fold increase in their total number is recorded (from 724 to 3319 units). Further increase of lithium concentration to 0.3% (mass.) does not lead to a pronounced increase in the number of particles. If a lithium content is 0.3% (mass.) the minimum particle size (5.93 μm for 15%(mass.) Mg2Si and 10.2 μm for 25% (mass.) Mg2Si) and their most uniform distribution (v ≈ 0.41) are achieved. According to thermodynamic modeling by the Sheil-Gulliver method, lithium alters the sequence of phase transformations in the Al – Mg2Si system, contributing to the formation of AlLiSi ternary phase, presumably inhibiting the growth of primary Mg2Si crystals. The obtained results can form the basis for optimizing the technology of synthesis of composites in terms of targeted effects on the processes of formation of their structure, which will expand the potential areas of industrial application of cast aluminum-matrix composites with reinforcing phases of crystallization origin. 

The research is funded by the grant of the Russian Science Foundation No. 20-19-00687-P, https://rscf.ru/project/23-19-45019/.

Ключевые слова Аluminum matrix composite materials, endogenous reinforcement, magnesium silicide, modification, lithium, crystallization, structure formation, thermodynamic modeling
Библиографический список

1. Thirumoorthy A., Arjunan T. V., Senthil Kumar K. L. Latest research development in aluminum matrix with particulate reinforcement composites – a review. Materials Today: Proceedings. 2018. Vol. 5, Iss. 1, Part 1. pp. 1657–1665.
2. Prasad S. V., Asthana R. Aluminum metal-matrix composites for automotive applications: Tribological considerations. Tribology Letters. 2004. Vol. 17, Iss. 3. pp. 445–453.
3. Ajay Kumar P., Rohatgi P., Weiss D. 50 Years of foundry-produced metal matrix composites and future opportunities. International Journal of Metalcasting. 2020. Vol. 14, Iss. 2. pp. 291–317.
4. Tjong S., Ma Z. Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering R: Reports. 2000. Vol. 29, Iss. 3–4. pp. 49–113.
5. Wang X., Jha A., Brydson R. In situ fabrication of Al3Ti particle reinforced aluminium alloy metal–matrix composites. Materials Science and Engineering: A. 2004. Vol. 364, Iss. 1–2. pp. 339–345.
6. Rathod N., Menghani J. A consequence of reinforcements in aluminumbased metal matrix composites: a literature review. Metallurgical and Materials Engineering. 2019. Vol. 25, Iss. 3. pp. 195–208.
7. Pramod S. L., Bakshi S. R., Murty B. S. Aluminum-based cast in situ composites: a review. Journal of Materials Engineering and Performance. 2015. Vol. 24, Iss. 6. pp. 2185–2207.
8. Pandee P., Sankanit P., Uthaisangsuk V. Structure-mechanical property relationships of in-situ A356/Al3Zr composites. Materials Science and Engineering: A. 2023. Vol. 866. 144673.
9. Seth P. P., Parkash O., Kumar D. Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys – a review. RSC Advances. 2020. Vol. 10, Iss. 61. pp. 37327–37345.
10. Sun Y., Ahlatci H. Mechanical and wear behaviors of Al – 12 Si – XMg composites reinforced with in situ Mg2Si particles. Materials and Design. 2011. Vol. 32, Iss. 5. pp. 2983–2987.
11. Huang Z., Wang K., Zhang Z., Li B. et al. Effects of Mg content on primary Mg2Si phase in hypereutectic Al – Si alloys. Transactions of Nonferrous Metals Society of China. 2015. Vol. 25, Iss. 10. P. 3197–3203.
12. Biswas P., Mondal M. K., Roy H., Mandal D. Microstructural evolution and hardness property of in situ Al – Mg2Si composites using one-step gravity casting method. Canadian Metallurgical Quarterly. 2017. Vol. 56. pp. 340–348.
13. Prusov E. S., Deev V. B., Vlasov A. V. Selection of components of cast metal matrix composites according to the criterion of specific rigidity. Fundamental problems of modern materials science. 2021. Vol. 18, No. 1. pp. 30-35.
14. Liu Z., Xie M., Liu X. M. Microstructure and properties of in-situ Al – Si – Mg2Si composite prepared by melt superheating. Applied Mechanics and Materials. 2011. Vol. 52. pp. 750–754.
15. Bhandari R., Mallik M., Mondal M. K. Microstructure evolution and mechanical properties of in situ hypereutectic Al – Mg2Si composites. AIP Conference Proceedings. 2019. Vol. 2162. pp. 020145.
16. Wu X., Zhang G., Wu F. Microstructural characteristics of Mg2Si/Al composite under different superheat and electromagnetic stirring. Rare Metal Materials and Engineering. 2015. Vol. 44, Iss. 3. pp. 576–580.
17. Akhlaghi A., Noghani M., Emamy M. The effect of La-intermetallic compounds on tensile properties of Al-15%Mg2Si in-situ composite. Procedia Materials Science. 2015. Vol. 11. pp. 55–60.
18. Qin Q. D., Zhao Y. G., Zhou W., Cong P. J. Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite. Materials Science and Engineering A. 2007. Vol. 447. pp. 186–191.
19. Nordin N. A., Farahany S., Ourdjini A., Abu Bakar T. A., Hamzah E. Refinement of Mg2Si Particulate Reinforced Al – 20% Mg2Si In Situ Composite with Addition of Antimony. Applied Mechanics and Materials. 2014. Vol. 663. pp. 271–275.
20. Zhang J., Zhao Y., Xu X., Liu X. Effect of ultrasonic on morphology of primary Mg2Si in in-situ Mg2Si/Al composite. Transactions of Nonferrous Metals Society of China. 2013. Vol. 23, Iss. 10. pp. 2852–2856.
21. Deev V. B., Prusov E. S., Ri E. H. Microstructural modification of in situ aluminum matrix composites via pulsed electromagnetic processing of crystallizing melt. Non-ferrous Metals. 2023. No. 1. pp. 36–40.
22. Deev V., Prusov E., Rakhuba E. Physical methods of melt processing at production of aluminum alloys and composites: opportunities and prospects of application. Materials Science Forum. 2019. Vol. 946 MSF. pp. 655–660.
23. Ghandvar H., Idris M. H., Ahmad N., Emamy M. Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al – 15% Mg2Si in-situ composite. Materials Characterization. 2018. Vol. 135. pp. 57–70.
24. Wu X., Zhang G., Wu F. Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al – Mg2Si metal matrix composite. Transactions of Nonferrous Metals Society of China. 2013. Vol. 23, Iss. 6. pp. 1532–1542.
25. Jin Y., Fang H., Wang S., Chen R. et al. Effects of Eu modification and heat treatment on microstructure and mechanical properties of hypereutectic Al – Mg2Si composites. Materials Science and Engineering: A. 2022. Vol. 831. 142227.
26. Wu X. F., Zhang G. G., Wu F. F. Microstructure and dry sliding wear behavior of cast Al – Mg2Si in-situ metal matrix composite modified by Nd. Rare Metals. 2013. Vol. 32. pp. 284–289.
27. Bai G., Liu Z., Lin J., Yu Z. et al. Effects of the addition of lanthanum and ultrasonic stirring on the microstructure and mechanical properties of the in situ Mg2Si/Al composites. Materials and Design. 2013. Vol. 90. pp. 424–432.
28. Liu Z., Xu H.-B., Zhou Z.-P., Xu H.-J. Effect of electromagnetic stirring on morphology evolution of Mg2Si in hypereutectic Al-Si alloy composite. Applied Mechanics and Materials. 2012. Vol. 217–219. pp. 47–50.
29. Vdovin K. N., Dubsky G. A., Deev V. B., Egorova L. G. et al. Influence of a magnetic field on structure formation during the crystallization and physicomechanical properties of aluminum alloys. Russian Journal of Non-Ferrous Metals. 2019. Vol. 60. Iss. 3. pp. 247–252.
30. Deev V. B., Selyanin I. F., Kutsenko A. I., Belov N. A. et al. Promising resource saving technology for processing melts during production of cast aluminum alloys. Metallurgist. 2015. Vol. 58, Iss. 11–12. pp. 1123–1127.
31. Deev V., Prusov E., Ponomareva K. Effect of superheat melt treatment on microstructure and mechanical properties of aluminum alloys produced by lost foam casting. Solid State Phenomena. 2018. Vol. 284 SSP. pp. 593–597.
32. Deev V., Prusov E., Ri E., Prihodko O. et al. Effect of melt overheating on structure and mechanical properties of Al-Mg-Si cast alloy. Metals. 2021. Vol. 11, Iss. 9. 1353.
33. Wang D., Zhang H., Guo C., Wu H. et al. Effect of cooling rate on growth and transformation of primary Mg2Si in Al–Mg2Si in situ composites. Journal of Materials Research. 2018. Vol. 33, Iss. 20. pp. 3458–3465.
34. Deev V. B., Selyanin I. F., Ponomareva K. V., Yudin A. S. et al. Fast coo ling of aluminum alloys in casting with a gasifying core. Steel in Translation. 2014. Vol. 44, Iss. 4. pp. 253–254.
35. Jin Y., Fang H., Chen R., Wang J. et al. Morphological modification of Mg2Si phase and strengthening mechanism in Mg2Si/Al composites by Eu addition and T6 heat treatment. Journal of Materials Science & Technology. 2023. Vol. 159. pp. 151–162.
36. Georgatis E., Lekatou A., Karantzalis A.E., Petropoulos H. et al. Development of a cast Al – Mg2Si – Si in situ composite: microstructure, heat treatment, and mechanical properties. Journal of Materials Engineering and Performance. 2013. Vol. 22, Iss. 3. pp. 729–741.
37. Li J., Lu S., Zhao D., Chen L. et al. Preparation of Mg2Si/Al – Cu composite under a novel continuous squeeze casting-extrusion process assisted with ultrasonic treatment. Materials Science and Engineering: A. 2023. Vol. 862. 144469.
38. Mukherjee I., Das P. Microstructure evolution during solidification in a low superheat casting process of the Al – Mg2Si composites having excess Si: A phase field study. Materials Today Communications. 2024. Vol. 40. 109620.
39. Slyudova A. A., Trudonoshin A. I., Prach E. L., Lisovskiy V. A. The Structure of Al – Mg – Si Casting alloys Modified by Lithium and Scandium. Tsvetnye Metally. 2021. No. 11. pp. 65–70.
40. Hadian R., Emamy M., Varahram N., Nemati N. The effect of Li on the tensile properties of cast Al –Mg2Si metal matrix composite. Materials Science and Engineering: A. 2008 Vol. 490, Iss. 1–2. pp. 250–257.
41. Gonzalez R. C., Woods R. E. Digital Image Processing. 4th ed. New York : Pearson Education, 2018. 1022 p.
42. Chen Q., Sundman B. Computation of partial equilibrium solidification with complete interstitial and negligible substitutional solute back diffusion. Materials Transactions. 2002. Vol. 43, Iss. 3. pp. 551–559.
43. Ghiasinejad J., Emamy M., Ghorbani M. R., Malekan A. Wear behavior of Al – Mg2Si cast in situ composite: effect of Mg2Si different volume fractions. AIP Conference Proceedings. 2010. Vol. 1252. 1012.

Language of full-text русский
Полный текст статьи Получить
Назад