Журналы →  Tsvetnye Metally →  2025 →  №8 →  Назад

MATERIALS SCIENCE
Название Deformation behavior of 1441 aluminum-lithium alloy in the hot rolling temperature range
DOI 10.17580/tsm.2025.08.08
Автор Pesin A. M., Razinkin A. V., Zamaraev V. A., Pustovoytov D. O.
Информация об авторе

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia

A. M. Pesin, Professor, Chair for Materials Processing Technologies, Deputy Head of the Laboratory of Mechanics of Gradient Nanomaterials named after A. P. Zhilyaev1, Doctor of Technical Sciences, e-mail: pesin@bk.ru

 

Kamensk-Uralsky Metallurgical Works, Kamensk-Uralsky, Russia

V. A. Zamaraev, Engineer-technologist, e-mail: zamaraevva@kumw.ru

A. V. Razinkin, Director of Production, Candidate of Technical Sciences, e-mail: RazinkinAV@kumz.ru

 

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia
D. O. Pustovoytov, Associate Professor, Chair for Materials Processing Technologies, Senior Researcher, Laboratory of Mechanics of Gradient Nanomaterials named after A. P. Zhilyaev, Candidate of Technical Sciences, e-mail: pustovoitov_den@mail.ru

Реферат

The hot torsion method using the Gleeble 3800 thermomechanical process simulator and the Torsion module was used to experimentally study the deformation resistance of 1441 aluminum-lithium alloy of the Al – Cu – Mg – Li system in a wide range of equivalent (true) strains (in the interval of 0.01–1.0), temperatures (250–450 оC) and strain rates (0.01–50) corresponding to the hot rolling conditions on a two-stand mill of the DANIELI company at Kamensk-Uralsky Metallurgical Works. To approximate the experimental curves of deformation resistance, a tabular dependence (by points) was used, which can be applied in specialized engineering programs for computer modeling based on the finite element method, for example, in the QForm program. The accuracy of the approximation of the experimental curves was assessed by comparing the calculated and experimental values of the torsion moment depending on the twist angle at different temperatures (250–450 оC) and deformation rates (0.01–50). The relative approximation error was within ±5%. For different temperature-rate conditions, the values of equivalent deformations corresponding to the onset of destruction of the sample material were determined experimentally. It is shown that at a low strain rate (0.01) and high temperatures (450–400 оC), the equivalent strain to failure has a high value. With an increase in the strain rate to 50 and a decrease in temperature to 250–300 оC, the equivalent strain to failure significantly decreases to 0. The research results can be used to improve and optimize the process modes of hot rolling of sheets and strips made of 1441 aluminum-lithium alloy under the conditions of a two-stand mill of the DANIELI company at Kamensk-Uralsky Metallurgical Works.
The research was carried out at the expense of a grant from the Russian Science Foundation (agreement No. 23-79-30015) and a co-financing agreement №KK0987F-2023.

Ключевые слова Aluminum-lithium alloy 1441, Gleeble 3800, hot torsion test, deformation resistance, finite element method, tabular approximation, strain to failure
Библиографический список

1. Friedlynder I. N., Sadkov V. V., Sandler V. S., Fedorenko T. P. Properties of semi-finished products from high-tech 1441 Al – Li-alloy. Tekhnologiya legkikh splavov. 2002. No. 4. pp. 1–6.
2. Antipov V. V., Oglodkova Yu. S., Selivanov A. A., Lukina E. A., Zaytsev D. V. Influence of temperature-time parameters of stepwise aging on the structure, phase composition, mechanical and corrosion properties of 1441 alloy sheets. Metally. 2020. No. 6. pp. 12–22.
3. Kablov E. N., Antipov V. V., Senatorova O. G., Lukina N. F. New class of laminated aluminum-glass plastics based on aluminum-lithium alloy 1441 with reduced density. Vestnik MGTU imeni N. E. Baumana. Seriya “Mashinostroenie”. 2011. Special issue. pp. 174–183.
4. Antipov V. V., Tkachenko E. A., Zaytsev D. V., Selivanov A. A., Ovsyannikov B. V. Influence of homogenization annealing modes on the structuralphase state and mechanical properties of 1441 aluminum-lithium alloy ingots. Trudy VIAM. 2019. No. 3. pp. 44–52.
5. Li H., Zou Z., Li J., Xu G., Zheng Z. Correlation between grain structures and tensile properties of Al – Li alloys. Transactions of Nonferrous Metals Society of China. 2023. Vol. 33. pp. 3597–3611.
6. El Arbi Hajjioui, Kenza Bouchaala, Mustapha Faqir, Elhachmi Essadiqi. A review of manufacturing processes, mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications. Heliyon. 2023. Vol. 9. e12565.
7. Antipov V. V., Lavro N. A., Sukhoivanenko V. V., Senatorova O. G. Experience of application of Al – Li 1441 alloy and laminates on its basis in hydroplanes. Tsvetnye Metally. 2013. No. 9. pp. 46–50.
8. Gloria A., Montanari R., Richetta M., Varone A. Alloys for aeronautic applications: state of the art and Perspectives. Metals. 2019. Vol. 9, Iss. 6. 662.
9. Bird R. К., Dicus D. L., Fridlyander J. N. Al – Li alloy 1441 for fuselage applications. Materials Science Forum. 2000. Vol. 331–337. pp. 907–912. DOI: 10.4028/www.scientific.net/MSF.331-337.907
10. Rioja R. J., Liu J. The evolution of Al – Li base products for aerospace and space applications. Metallurgical and Materials Transactions A. 2012. Vol. 43, Iss. 9. pp. 3325–3337.
11. Petrov P. A., Fam V. N., Burlakov I. A., Matveev A. G., Saprykin B. Yu., Petrov M. A., Dixit U. Sh. Improving the reliability and efficiency of measuring the deformation parameters of aluminum alloys on an universal testing machine. Problemy mashinostroeniya i nadyozhnosti mashin. 2022. No. 3. pp. 102–112.
12. Petrov P. A., Fam V. N., Burlakov I. A., Matveev A. G., Saprykin B. Yu., Petrov M. A. Construction of yield curves of AMg5 aluminum alloy based on natural and computational experiments. Tekhnologiya legkikh splavov. 2022. No. 2. pp. 6–74.
13. Peterson L. A., Horstemeyer M. F., Lacy T. E., Moser R. D. Experimental characterization and constitutive modeling of an aluminum 7085-T711 alloy under large deformations at varying strain rates, stress states, and temperatures. Mechanics of Materials. 2020. Vol. 151. 103602.
14. Erpalov M. V., Kungurov E. A. Examination of hardening curves definition methods in torsion test. Solid State Phenomena. 2018. Vol. 284. pp. 598–604.
15. Vlasov A. V., Stebunov S. A., Evsyukov S. A., Biba N. V., Shitikov A. A. Finite element modeling of technological processes of forging and die forging: tutorial. Moscow : Izdatelstvo MGTU imeni N. E. Baumana, 2019. 383 p.

Language of full-text русский
Полный текст статьи Получить
Назад