| Название |
Quality control of metal of rolling rolls made of 8Kh3SMF steel by ultrasonic
and metallographic methods |
| Информация об авторе |
Uralmashzavod, Yekaterinburg, Russia
A. V. Belonosov, Head of the Laboratory of Non-Destructive Testing Methods, Quality Directorate, e-mail: A.Belonosov@uralmash.ru
Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia O. A. Chikova, Dr. Phys.-Math., Associate Prof., Prof., Dept. of Physics, Institute of Fundamental Education, e-mail: O.A.Chikova@urfu.ru N. A. Zaytseva, Cand. Eng., Associate Prof., Dept. of Physics, Institute of Fundamental Education, e-mail: mail: n.a.zaitceva@urfu.ru |
| Библиографический список |
1. Costa e Silva A. L. V. da. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications. Journal of Materials Research and Technology. 2019. Vol. 8, Iss. 2. pp. 2408–2422. DOI: 10.1016/j.jmrt.2019.01.009 2. Min Wang, Yan Ping Bao, Quan Yang et al. The ultrasonic detection of macro-inclusions in steel. Advanced Materials Research. 2012. Vol. 572. pp. 334–337. DOI: 10.4028/www.scientific.net/AMR.572.334 3. Kim Y., Kim J., Ahn J. et al. Detection of micro inclusions in steel sheets using high-frequency ultrasound speckle analysis. Scientific Reports. 2021. Vol. 11, Iss. 1. 20416. DOI: 10.1038/s41598-021-99907-4 4. Wackenrohr S., Herbst S., Wöbbeking P., Gerstein G., Nürnberger F. Correlating ultrasonic velocity in DC04 with microstructure for quantification of ductile damage. Journal of Manufacturing and Materials Processing. 2023. Vol. 7, Iss. 4. 142. DOI: 10.3390/jmmp7040142 5. Juan R., Wang M., Lian J., Gu C., Li L., Bao Y. Quantifying the comprehensive characteristics of inclusion-induced defects using an integrated destructive and non-destructive method. Materials. 2021. Vol.14, Iss. 6. 1475. DOI: 10.3390/ma14061475 6. Chikova O. A., Belonosov A. V., Istomina Z. A. Study of the structure of forgings made of 75Kh3MF steel by the ultrasonic method for the purpose of quality control. Defektoskopiya. 2012. No. 9. pp. 36–41. 7. Belonosov A. V., Chikova O. A., Yurovskikh V. V., Chezganov D. S. Study of the metal structure of rolling rolls made of 9Kh2MF and 8Kh3SGF steel using the ultrasonic method for the purpose of quality control. Defektoskopiya. 2013. No. 4. pp. 17–28. 8. Belonosov A. V., Chikova O. A., Zaytseva N. A. Study of the metal microstructure of rolling rolls with laser cladding for the purpose of quality control. Izvestiya vuzov. Chernaya metallurgiya. 2018. Vol. 61. No. 7. pp. 510–519. 9. Monnot J., Heritier B., Cogne J. Y. Relationship of melting practice, inclusion type, and size with fatigue resistance of bearing steels. Effect of Steel Manufacturing Processes on the Quality of Bearing Steels (ASTM STP 987). ASTM International, 1988. 409 p. 10. Spriestersbach D., Grad P., Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. International Journal of Fatigue. 2014. Vol. 64. pp. 114–120. DOI: 10.1016/j.ijfatigue.2014.03.003 11. Fu H., Rydel J. J., Gola A. M., Yu F., Geng K., Lau C. et al. The relationship between 100Cr6 steelmaking, inclusion microstructure and rolling contact fatigue performance. International Journal of Fatigue. 2018. Vol. 129. 104899. DOI: 10.1016/j.ijfatigue.2018.11.011 12. Sokolov R.A., Novikov V.F., Kovenskiy I.M., Muratov K.R. et al. Effect of heat treatment on the formation of MnS compounds in low-carbon structural steel 09G2S. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 2022. Vol. 24, No. 4. pp. 113–126 . DOI: 10.17212/1994-6309-2022-24.4-113-126 13. Ahmad H., Zhao B., Lyu S., Huang Z. et al. Formation of complex inclusions in gear steels for modification of manganese sulphide. Metals. 2021. Vol. 11. 2051. DOI: 10.3390/ met111220 14. Ånmark N., Karasev A., Jönsson P. G. the effect of different non-metallic inclusions on the machinability of steels. Materials. 2015. Vol. 8. pp. 751-783. DOI: 10.3390/ma8020751.6–10 15. Wang Y., Sridhar S., Valdez M. Formation of CaS on Al2O3-CaO inclusions during solidification of steels. Metallurgical and Materials Transactions B. 2002. Vol. 33. pp. 625–632. DOI: 10.1007/s11663-002-0042-1 16. Katsunari O., Kiyohito I., Taiji N. Effect of titanium addition on the formation and distribution of MnS inclusions in steel during solidification. ISIJ International. 1997. Vol. 37. pp. 332–338. DOI: 10.2355/isijinternational.37.332 17. Liu C-s., Liu X-q., Ni H-w. et al. Effect of vanadium on modification of inclusions in Mn- and Si-deoxidized steel during heat treatment at 1473 K. J. Iron Steel Res. Int. 2017. Vol. 24. pp. 520–528. DOI: 10.1016/S1006-706X(17)30079-1 18. Murakami Y. Metal fatigue: effects of small defects and nonmetallic inclusions. Kidlington, England : Elsevier Science, 2002. 149 p. 19. Tetsuro O., Takeshi H., Hiromu F., Yoshio N., Koichi A. Effect of oxides on the nucleation behavior in supercooled iron. Tetsu-To-Hagane. Journal of the Iron and Steel Institute of Japan. 1976. Vol. 62. No. 6. pp. 614–623. DOI: 10.2355/tetsutohagane1955.62.6_614 20. Bramfitt B. L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metallurgical Transactions. 1970. Vol. 1, Iss. 7. pp. 1987–1995. DOI: 10.1007/BF02642799 21. Xu M., Ge X., Yao W., Tang S. et al. Atomic distance tuning effect for nucleation in liquid iron. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2018. Vol. 49, Iss. 10. pp. 4419–4423. DOI: 10.1007/s11661-018-4807-9 22. Xu M., Wang L., Lu W., Zeng L. et al. The nucleation potency of in situ-formed oxides in liquid iron. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2018. Vol. 49, Iss. 5. pp. 1762–1769. DOI: 10.1007/s11661-018-4528-0 |