| References |
1. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes // Advanced Engineering Materials. 2004. Vol. 6, Iss. 5. P. 299–303. 2. Cantor B., Chang I. T. H., Knight P., Vincent A. J. B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering: A. 2004. Vol. 375–377. P. 213–218. 3. Gludovatz B., Hohenwarter A., Catoor D., Chang E. H. et al. A fracture-resistant high-entropy alloy for cryogenic applications // Science. 2014. Vol. 345, Iss. 6201. P. 1153–1158. 4. Youssef K. M., Zaddach A. J., Niu C., Irving D. L., Koch C. C. A novel low-density, high-hardness, high-entropy alloy with closepacked single-phase nanocrystalline structures // Materials Research Letters. 2015. Vol. 3, Iss. 2. P. 95–99. 5. Lee C. P., Chen Y. Y., Hsu C. Y., Yeh J. W., Shih H. C. The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx // Journal of the Electrochemical Society. 2007. Vol. 154. № 8. C424. 6. Stepanov N. D., Yurchenko N. Yu., Gridneva A. O., Zherebtsov S. V. et al. Structure and hardness of B2 ordered refractory AlNbTiVZr0.5 high entropy alloy after high-pressure torsion // Materials Science and Engineering: A. 2018. Vol. 716. P. 308–315. 7. Zhi Q., Tan X., Liu Zh., Liu Y. et al. Effect of Zr content on microstructure and mechanical properties of lightweight Al2NbTi3V2Zrxr high entropy alloy // Micron. 2021. Vol. 144. 103031. DOI: 10.1016/j.micron.2021.103031 8. Yang X., Zhang Y., Liaw P. K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys // Procedia Engineering. 2012. Vol. 36. P. 292–298. 9. Hsu C.-Y., Yeh J.-W., Chen S.-K., Shun T.-T. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition // Metallurgical and Materials Transactions A. 2004. Vol. 35. P. 1465–1469. 10. Cao Y., Liu Y., Liu B., Zhang W. et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys // Transactions of Nonferrous Metals Society of China. 2019. Vol. 29, Iss. 7. P. 1476–1483. 11. Gorr B., Mueller F., Christ H.-J., Mueller T. et al. High temperature oxidation behavior of an equimolar refractory metalbased alloy 20 Nb – 20 Mo – 20 Cr – 20 Ti – 20 Al with and without Si addition // Journal of Alloys and Compounds. 2016. Vol. 688, Part B. P. 468–477. 12. Yao H., Liu Y., Sun X., Lu Y. et al. Microstructure and mechanical properties of Ti3V2NbAlxNiy low-density refractory multielement alloys // Intermetallics. 2021. Vol. 133. 107187. DOI: 10.1016/j.intermet.2021.107187 13. Stepanov N. D., Yurchenko N. Yu., Skibin D. V., Tikhonovsky M. A., Salishchev G. A. Structure and mechanical properties of the AlCrx r NbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys // Journal of Alloys and Compounds. 2015. Vol. 652. P. 266–280. 14. Yurchenko N. Y., Stepanov N. D., Zherebtsov S. V., Tikhonovsky M. A., Salishchev G. A. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrxr (x = 0–1.5) highentropy alloys // Materials Science and Engineering: A. 2017. Vol. 704. P. 82–90. 15. Wan B., Li X.-Q., Pan C.-L., Li D.-Y. et al. Microstructure and mechanical properties of TiAl/Ni-based superalloy joints vacuum brazed with Ti – Zr – Fe – Cu – Ni – Co – Mo filler metal // Rare Metals. 2021. Vol. 40. P. 2134–2142. 16. Jia Z., Gao Z.-X., Ji J.-J., Liu D.-X. et al. High-temperature deformation behavior and processing map of the as-cast Inconel 625 alloy // Rare Metals. 2021. Vol. 40. P. 2083–2091. 17. Senkov O. N., Wilks G. B., Scott J. M., Miracle D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys // Intermetallics. 2011. Vol. 19, Iss. 5. P. 698–706. 18. Senkov O. N., Scott J. M., Senkova S. V., Miracle D. B., Woodward C. F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy // Journal of alloys and compounds. 2011. Vol. 509, Iss. 20. P. 6043–6048. 19. Senkov O. N., Senkova S. V., Dimiduk D. M., Woodward C. F., Miracle D. B. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy // Journal of Materials Science. 2012. Vol. 47. P. 6522–6534. 20. Wu Y. D., Cai Y. H., Wang T., Si J. J. et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties // Materials Letters. 2014. Vol. 130. P. 277–280. 21. Lin C.-M., Juan C.-C., Chang C.-H., Tsai C.-W., Yeh J.-W. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys // Journal of Alloys and Compounds. 2015. Vol. 624. P. 100–107. 22. Poletti M. G., Fiore G., Szost B. A., Battezzati L. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn) // Journal of Alloys and Compounds. 2015. Vol. 620. P. 283–288. 23. Tong C.-J., Chen M.-R., Yeh J.-W., Lin S.-J. et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements // Metallurgical and Materials Transactions A. 2005. Vol. 36. P. 1263–1271. 24. Zhang K. B., Fu Z. Y., Zhang J. Y., Wang W. M. et al. Microstructure and mechanical properties of CoCrFeNiTiAlx high- entropy alloys // Materials Science and Engineering: A. 2009. Vol. 508, Iss. 1–2. P. 214–219. 25. Wang X. F., Zhang Y., Qiao Y., Chen G. L. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys // Intermetallics. 2007. Vol. 15, Iss. 3. P. 357–362. 26. Jinhong P., Ye P., Hui Z., Lu Z. Microstructure and properties of AlCrFeCuNix (0.6 ≤ x ≤ 1.4) high-entropy alloys // Materials Science and Engineering: A. 2012. Vol. 534. P. 228–233. 27. Рогачев А. С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физика металлов и металловедение. 2020. Т. 121, № 8. С. 807–841. 28. Санин В. Н., Юхвид В. И., Икорников Д. М., Андреев Д. Е. и др. СВС-металлургия литых высокоэнтропийных сплавов на основе переходных металлов // Доклады Академии наук. 2016. Т. 470, № 4. С. 421–426. DOI: 10.7868/S0869565216280124 29. Знаменский Л. Г., Ивочкина О. В., Кулаков Б. А., Крымский В. В. Электроимпульсная и ультразвуковая обработка материалов в точном литье. – Челябинск : Изд. центр ЮУрГУ, 2010. – 259 с. 30. Балакирев В. Ф., Крымский В. В., Ри Э. Х., Ри Х., Шабурова Н. А. Электроимпульсная обработка металлических расплавов; под ред. акад. РАН Л. А. Смирнова. – Хабаровск : Изд-во Тихооокеан. гос. ун-та, 2014. – 142 с. 31. Деев В. Б., Ри Э. Х., Прусов Е. С., Ермаков М. А., Гончаров А. В. Модифицирование литейных алюминиевых сплавов системы Al – Mg – Si обработкой жидкой фазы наносекундными электромагнитными импульсами // Известия вузов. Цветная металлургия. 2021. Т. 27, № 4. С. 32–41. DOI: 10.17073/0021-3438-2021-4-32-41 32. Andersson J.-O., Helander T., Höglund L., Shi P., Sundman B. Thermo-Calc and DICTRA, computational tools for materials science // Calphad. 2002. Vol. 26, Iss. 2. P. 273–312. 33. ГОСТ 2912–79. Хрома окись техническая. Технические условия. – Введ. 01.01.1980. 34. ГОСТ 4168–79. Натрий азотнокислый. Технические условия. – Введ. 01.01.1980. 35. ГОСТ 6058–73. Порошок алюминиевый. Технические условия. – Введ. 01.01.1975. |