Журналы →  Tsvetnye Metally →  2025 →  №10 →  Назад

RARE METALS, SEMICONDUCTORS
Название DFT study of electronic and structural properties of two-dimensional MoS2 containing sulfur vacancies
DOI 10.17580/tsm.2025.10.03
Автор Chibisov A. N., Bulakh S. S., Srivastava A.
Информация об авторе

Computer Center, Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk
A. N. Chibisov, Leading Researcher, Laboratory of Multiscale Computer Modeling of New Materials, Doctor of Physical and Mathematical Sciences, e-mail: andreichibisov@yandex.ru
S. S. Bulakh, Junior Researcher, Laboratory of Multiscale Computer Modeling of New Materials, e-mail: bulakh-svyatoslav@mail.ru


Indian Institute of Information Technology and Management, Gwalior, India
A. Srivastava, Advanced Materials Group, CNT Lab2, Candidate of Technical Sciences, Professor

Реферат

Design of nanoelectronic quantum devices capable of accurately performing logical operations with a small number of errors and consuming little electrical energy is an important fundamental task. The creation of such computers will allow for development of quantum sensors sensitive to the detection of small electric and magnetic fields. The article presents the study of the atomic and electronic structure of two-dimensional monolayers of molybdenum disulfide MoS2. The creation of a sulfur vacancy in MoS2 monolayers leads to the induction of electronic distortion in the atomic structure, which causes changes in the electronic and electrical properties of such a material. Using theoretical calculation methods, within the framework of the density functional theory DFT and the pseudopotential method, the analysis of changes in the band structure, changes in the band gap and the shift of the Fermi level caused by the formation of a defect in the molybdenum disulfide monolayer is performed. The effect of a sulfur vacancy on the change in the effective mass of the main charge carriers in the system (electrons and holes) with and without the formation of a sulfur vacancy is also considered. The obtained results show that a sulfur vacancy causes significant changes in the electronic structure, in the distribution of the charge density and electrostatic potential of molybdenum disulfide. The analysis of these properties will allow to draw conclusions and develop recommendations for the potential use of MoS2 in the development of new quantum materials. These ideas are crucial for a detailed understanding of defect engineering in two-dimensional materials, which has promising implications for their use in next-generation electronic and quantum devices.
The work was carried out using the infrastructure of the Center for Collective Use “High-Performance Computing and Big Data” (CCU “Informatics”) of the FRC CSC RAS (Moscow) and the CCU “Data Center FEB RAS”.

Ключевые слова Molybdenum disulfide, monolayer, vacancy, pseudopotential method, density functional theory
Библиографический список

1.Loginov A. B., Ismagilov R. R., Bokova-Sirosh S. N., Bozhev I. V. et al. Formation of MoS2, WS2, MoO2 nanostructured films and heterostructures thereon. Zhurnal tekhnicheskoy fiziki. 2021. Vol. 91, Iss. 10. pp. 1509–1516.
2. Krivosheeva A. V., Shaposhnikov V. L., Borisenko. V. E. Influence of vacancy defects and impurities on the electronic structure of two-dimensional crystals MoS2, MoSе2, WS2 and WSe2. Doklady Natsionalnoy akademii nauk Belarusi. 2016. Vol. 60, No. 6. pp. 48–53.
3. Lee Yeonghun, Hu Yaoqiao, Lang Xiuyao, Kim Dongwook et al. Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths. Nature Communications. 2022. Vol. 13. 7501.
4. Mathew T. N., Nair S., O’Dowd K., Forouzandeh K. et al. 2D MoS2: structure, mechanisms and photocatalytic applications. Materials Today Sustainability. 2021. Vol. 13.
5. Starukhin A. N., Nelson D. K., Kurdyukov D. A., Stovpyaga E. Yu. Polarized luminescence of MoS2 nanodots. Fizika tverdogo tela. 2021. Vol. 63, Iss. 12. pp. 2192–2197.
6. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993. Vol. 47. 558.
7. Kresse G., Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996. Vol. 6. pp. 15–50.
8. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996. Vol. 54. 11169.
9. Chibisov A. N., Chibisova M. A. Ab initio prediction of non-collinear magnetic states of the quantum phosphorus qubit in a silicon lattice. Journal of Physical Chemistry Letters. 2020. Vol. 11, Iss. 11. pp. 4427–4429.
10. Chibisov A. N., Aleshin M. S., Chibisova M. A. DFT analysis of hole qubits spin state in germanium thin layer. Nanomaterials. 2022. Vol. 12, Iss. 13. 2244.
11. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011. Vol. 44. pp. 1272–1276.
12. Chibisov A. N., Chibisova M. A., Prokhorenko A. V., Obrazcov K. V. et al. Possibilities of controlling the quantum states of hole qubits in an ultrathin germanium layer using a magnetic substrate: results from ab initio calculations. Nanomaterials. 2023. Vol. 13, Iss. 23. 3070.
13. Prokhorenko A. V., Chibisov A. N., Gnidenko A. A., Chibisova M. A. et al. Ab initio study of the influence of spin and orbital magnetic moments on the stability of magnetic and charge distribution in Co:ZnO monolayer. Journal of Physical Chemistry Letters. 2024. Vol. 15, Iss. 41. pp. 10295–10300.
14. Scho.nfeld B., Huang J. J., Moss S. C. Anisotropic mean-square displacements (MSD) in Single crystals of 2H- and 3R-MoS2. Acta Cryst. 1983. Vol. B39. pp. 404–407.
15. Domashevskaya E. P., Goloshchapov D. L., Dambos A. Kh., Rudnev E. V. et al. Features of morphology and optical properties of molybdenum disulfide nanostructures from a monomolecular layer to a fractal-like substructure. Fizika i tekhnika polupropovodnikov. 2019. Vol. 53, Iss. 7. pp. 940–946.
16. Ozaki Fumihiko, Tanaka Shunsuke, Choi Young Hyun, Osada Wataru et al. Hydrogen-induced sulfur vacancies on the MoS2 basal plane studied by ambient pressure XPS and DFT calculations. Chem. Phys. Chem. 2023. Vol. 24. p. e202300477.
17. Ho.tger A., Amit T., Klein J., Barthelmi K. et al. Spin-defect characteristics of single sulfur vacancies in monolayer MoS2. npj 2D Materials and Applications. 2023. Vol. 7, Iss. 30. DOI: 10.1038/s41699-023-00392-2
18. Aliyar Thasneem, Ma Hongyang, Krishnan Radha, Singh Gagandeep et al. Symmetry breaking and spin-orbit coupling for individual vacancy-induced in-gap states in MoS2 monolayers. Nano Lett. 2024. Vol. 24. pp. 2142–2148.

Language of full-text русский
Полный текст статьи Получить
Назад