Журналы →  Tsvetnye Metally →  2025 →  №10 →  Назад

MATERIALS SCIENCE
Название Optimizing heat treatment process for Ti – 3Al – 5Mo – 5V – 2Cr – 2Zr – 2Fe – 1Nb alloys by in-situ observation of microstructure evolution
DOI 10.17580/tsm.2025.10.10
Автор Botao Jiang, Xu Liu, Baoxian Su, Yanqing Su
Информация об авторе

Harbin Institute of Technology, Harbin, China

Botao Jiang, Independent Expert
Xu Liu, Independent Expert
Baoxian Su, Doctot of Engineering Sciences, Professor
Yanqing Su, Doctot of Engineering Sciences, Professor, e-mail: suyq@hit.edu.cn

Реферат

Titanium alloys are in great demand in the field of materials science and engineering due to their enhanced mechanical properties, high corrosion resistance and biocompatibility. Heat treatment of titanium alloys is necessary to achieve the maximum level of mechanical and other properties due to a certain effect on phase transformations. However, determining the optimal type of heat treatment for a particular alloy is not an easy task, requiring a lot of time and experiments. The generally accepted approach is based on the diagnosis of the material after its processing in order to establish the final microstructure and properties, which is a laborious process. Optimization of heat treatment of a metastable β-titanium alloy obtained by vacuum-arc remelting is considered. Using the in-situ observation of phase transformations in an alloy at high temperatures performed on a laser scanning confocal microscope, the optimal temperature of its heat treatment was determined to achieve maximum material strength, which was 800 оC. The hypothesis was confirmed in the course of studies using scanning electron and transmission electron microscopy, as well as in the process of tensile testing of alloys. The experimental results showed that the primary α-phase was released along several orientations during the solid solution treatment, and the nanoscale secondary α-phase, released during the aging treatment, was evenly distributed. The strength test results showed that after processing a solid β-solution at a temperature of 800 оC, compared with other temperatures, the alloy has the highest tensile strength, which confirms the reliability of using the in-situ observation. The practical significance of this study lies in the possibility of applying its results to optimize the heat treatment of β-titanium alloys.

Ключевые слова Titanium alloys, in-situ observation, solid solution heat treatment, heat treatment, phase transition, mechanical properties, homogenization
Библиографический список

1. Huang L. J., An Q., Geng L., Wang S., Jiang S., Cui X. P., Zhang R., Sun F. B., Jiao Y., Chen X., Wang C. Y. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites. Adv. Mater. 2021. No. 6. pp. 27.
2. Huang L. J., Geng L., Peng H. X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal. Prog. Mater. Sci. 2015. pp. 93–168.
3. Zhang L., Wu B. L., Zhao Y. H., Du X. H. Exploration of Al-based matrix composites reinforced by hierarchically spherical agents. Int. J. Miner. Metall. Mater. 2013. No. 8. pp. 796–801.
4. Zhang C. J., Jiang X., Lu Z. D., Feng H., Zhang S. Z., Xu Y., Hayat M. D., Cao P. Effect of duplex aging on microstructure and mechanical properties of near-beta titanium alloy processed by isothermal multidirectional forging. Trans. Nonferrous Met. Soc. China. 2022. No.4. pp. 1159–1168.
5. Yu W., Zhou J. X., Yin Y. J., Tu Z. X., Feng X., Nan H., Lin J. P., Ding X. F. Effects of heat treatments on microstructures of TiAl alloys. Int. J. Miner. Metall. Mater. 2022. No. 6. pp. 1225–1230.
6. Jiang Y. Q., Lin Y. C., Zhang X. Y., Chen C., Wang Q. W., Pang G. D. Isothermal tensile deformation behaviors and fracture mechanism of Ti – 5 Al – 5 Mo –5 V – 1 Cr – 1 Fe alloy in beta phase field. Vacuum. 2018. pp. 187–197.
7. Lan L., Xin R. Y., Jin X. Y., Gao S., He B. Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti – 6 Al – 4 V alloy fabricated by electron beam melting. Int. J. Miner. Metall. Mater. 2022. No. 9. pp. 1780–1787.
8. Xu S. H., Liu Y., Liu B., Wang X., Chen Z. X. Microstructural evolution and mechanical properties of Ti – 5 Al – 5 Mo – 5 V – 3 Cr alloy by heat treatment with continuous temperature gradient. Trans. Nonferrous Met. Soc. China. 2018. No. 2. pp. 273–281.
9. Yang X. W., Dong X. R., Li W. Y., Feng W. Y., Xu Y. X. Effect of solution and aging treatments on corrosion performance of laser solid formed Ti – 6 Al – 4V alloy in a 3.5 wt. % NaCl solution. J. Mater. Res. Technol. 2020. No. 2. pp. 1559–1568.
10. Wan X. L., Wu K. M., Huang G., Wei R., Cheng L. In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels. Int. J. Miner. Metall. Mater. 2014. No. 9. pp. 878–885.
11. Chen D. Y., Liu Y., Wang R. Q., Ye J. W. Sliding wear behaviour of Fe/316L/430-Ti(C,N) composites prepared via spark plasma sintering and subsequent heat treatment. Int. J. Miner. Metall. Mater. 2021. No. 7. pp. 1215–1223.
12. Jiang B. T., Wang L., Yan H., Zhu G. Q., Teng J. L., Wang B. B., Luo L. S., Chen R. R., Su Y. Q., Guo J. J. Hydrogen-induced modification of the interface between matrix and ceramic phase of (TiB + TiC)/Ti – 6 Al – 4 V. Compos. Commun. 2023. Vol. 37. 101434.
13. Yadav P., Saxena K. K. Effect of heat-treatment on microstructure and mechanical properties of Ti alloys: An overview. Proceedings of the 10th International Conference of Materials Processing and Characterization (ICMPC), GLA Univ, Mathura, INDIA. 2020. pp. 2546–2557.
14. Bermingham M. J., Kent D., Pace B., Cairney J. M., Dargusch M. S. High strength heat-treatable beta-titanium alloy for additive manufacturing. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2020. pp. 7.
15. Cai C., Wu X., Liu W., Zhu W., Chen H., Qiu J. C. D., Sun C. N., Liu J., Wei Q. S., Shi Y. S. Selective laser melting of near-alpha titanium alloy Ti – 6 Al – 2 Zr – 1 Mo – 1V: Parameter optimization, heat treatment and mechanical performance. J. Mater. Sci. Technol. 2020. Vol. 57. pp. 51–64.
16. Zhu Y. Y., Chen B., Tang H. B., Cheng X., Wang H. M., Li J. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti – 5 Al – 2 Sn – 2 Zr – 4 Mo – 4 Cr titanium alloy. Trans. Nonferrous Met. Soc. China. 2018. No. 1. pp. 36–46.
17. Yumak N., Aslantas K. A review on heat treatment efficiency in metastable beta titanium alloys: the role of treatment process and parameters. J. Mater. Res. Technol. 2020. No. 6. pp. 15360–15380.
18. Wu C., Zhan M. Microstructural evolution, mechanical properties and fracture toughness of near beta titanium alloy during different solution plus aging heat treatments. J. Alloy. Compd. 2019. Vol. 805. pp. 1144–1160.

19. Zhao Z. B., Wang Q. J., Liu J. R., Yang R. Effect of heat treatment on the crystallographic orientation evolution in a near-alpha titanium alloy Ti60. Acta Mater. 2017. Vol. 131. pp. 305–314.
20. Shekhar S., Sarkar R., Kar S. K., Bhattacharjee A. Effect of solution treatment and aging on microstructure and tensile properties of high strength beta titanium alloy Ti – 5 Al – 5 V – 5 Mo – 3 Cr. Mater. Des. 2015. Vol. 66. pp. 596–610.
21. Zong Y. Y., Huang S. H., Guo B., Shan D. B. In situ study of phase transformations in Ti-6Al-4V-xH alloys. Trans. Nonferrous Met. Soc. China. 2015. No. 9. pp. 2901–2911.
22. Li Z. P., Luo L. S., Su Y. Q., Wang B. B., Wang L., Liu T., Yao M. J., Liu C., Guo J. J., Fu H. Z. In-situ study on gamma phase transformation behaviour of gamma-TiAl alloys at different cooling rates. Prog. Nat. Sci. 2022. No. 3. pp. 345–357.
23. Li Y., Fang H., Chen R., Sun S., Xue X., Guo J. Optimization of (α + β) microstructure and trade-off between strength and toughness: Based on Mo[eq] and d electron theory in β-Ti alloy. Mater. Des. 2023. Vol. 231, Iss. 4-5. 112022.
24. Gorniewicz D., Przygucki H., Kopec M., Karczewski K., Jozwiak S. TiCoCrFeMn (BCC+C14) high-entropy alloy multiphase structure analysis based on the theory of molecular orbitals. Materials. 2021. No. 18. pp. 16.
25. Sadeghi M., Niroumand B. Design and characterization of a novel MgAl-ZnCuMn low melting point light weight high entropy alloy (LMLW-HEA). Intermetallics. 2022. Vol. 151.107658.
26. Wu Q. F., Jia Y. H., Wang Z. J., He F., Wei Y. F., Li J. J., Wang J. C. Rapid alloy design from superior eutectic high-entropy alloys. Scr. Mater. 2022. Vol. 219.114875.
27. Du ZX., Xiao S. L., Xu L. J., Tian J., Kong F. T., Chen Y. Y. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy. Mater. Des. 2014. Vol. 55. pp. 183–190.
28. Ivasishin O. M., Markovsky P. E., Semiatin S. L., Ward C. H. Aging response of coarse- and fine-grained beta titanium alloys. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2005. No. 1-2. pp. 296–305.
29. Lu Z. D., Zhang C. J., Feng H., Zhang S. Z., Han J. C., Jia Y., Du Z. X., Chen Y. Y. Effect of heat treatment on microstructure and tensile properties of 2 vol.% TiCp/near-beta Ti composite processed by isothermal multidirectional forging. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2019. pp. 7.
30. Gupta A., Khatirkar R., Singh J. A review of microstructure and texture evolution during plastic deformation and heat treatment of beta-Ti alloys. J. Alloy. Compd. 2022. Vol. 899.163242.

Language of full-text русский
Полный текст статьи Получить
Назад