| ArticleAuthorData |
Khabarovsk Federal Research Center, Far Eastern Branch of the Russian Academy of Sciences, Institute of Mechanical Engineering and Metallurgy, Komsomolsk-on-Amur, Russia
O. N. Komarov, Cand. Eng., Associate Prof., Leading Researcher, e-mail: olegnikolaevitsch@rambler.ru G. M. Sevastyanov, Cand. Phys.-Math., Leading Researcher, e-mail: akela.86@mail.ru A. V. Popov, Junior Researcher, e-mail: popov.av@live.com
Amurmetall-Lityo, Komsomolsk-on-Amur, Russia.
V. V. Tarasov, Director, e-mail: TarasovVV@amurstal.com S. A. Gakh, Head of Production Preparation Dept., e-mail: gakhsa@amurstal.com A. E. Serdyukov, Deputy Director for Production, e-mail: serdyukovae@amurstal.com |
| Abstract |
The demand for industrial enterprises' products is directly determined by their competitiveness, which is a complex characteristic based on low production costs, high reliability and durability, multi-functionality and versatility, easy accessibility of the products, etc. Consumer interest in the products ensures an increase in the competitive and economic potential of the enterprises, which is supported by improving the above-mentioned characteristics of the products. In particular, various methods are used in foundry production to improve the quality characteristics of cast billets. These methods allow for the improvement of the physical, mechanical, technological, and operational properties of the resulting products, one of which is the introduction of refining and deoxidizing mixtures into the alloys during the melting process. This method allows for the production of alloys with high chemical purity, which determines the grain morphology and the presence of minor inclusions that affect the performance characteristics under various operating conditions, including the lowering of the visco-elastic transition temperature, which leads to an increase in low-temperature impact strength. This allows for the full realization of the potential of known alloys and their use as versatile materials that can replace more expensive and scarce materials in specific applications. In this regard, Amurmetall-Litye LLC has carried out work toimprove the characteristics of Gadfield steel by using deoxidizing (DDA) mixtures at certain stages of smelting, the result of which improvement in the conditions for the implementation of technological operations for the production of alloys, as well as an increase in their characteristics, in particular in particular, a change in the morphology of the structural components, a decrease in the concentration of inclusions that determine the increase in the toughness of the alloy at temperature -60 °C to 77 % with an increase in strength characteristics and hardness in the required ranges according to regulatory documentation. This work was carried out within the framework of the State Assignment of the Khabarovsk Federal Research Center, Far Eastern Branch of the Russian Academy of Sciences. |
| References |
1. Sabzi M., Farzam M. Hadfield manganese austenitic steel: a review of manufacturing processes and properties. Materials research express. 2019. Vol. 6, Iss. 10. 1065c2. DOI: 10.1088/2053-1591/ab3ee3 2. Okechukwu C., Dahunsi O. A., Oke P. K., Oladele İ. O., Dauda M. Prominence of Hadfield steel in mining and minerals industries: A review. International Journal of Engineering Technologies. 2017. Vol. 3, Iss. 2. pp. 83–90. DOI: 10.19072/ijet.299068 3. Lindholt L. Arctic natural resources in a global perspective. The economy of the North. 2006. pp. 27–39. 4. Southcott C., Abele F., Natcher D., Parlee B. Resources and sustainable development in the Arctic. London : Routledge, 2019. 315 p. 5. Popov A. V., Khudyakova V. A., Sevastyanov G. M., Komarov O. N. Effect of alloying elements on characteristics of steels intended for use in low and cryogenic temperatures. Problemy chernoy metallurgii i materialovedeniya. 2024. No. 4. pp. 108–121. DOI: 10.52351/00260827_2024_4_108 6. Jiang L., Wang J., Zhang T., Dorin T., Sun X. Superior low temperature toughness in a newly designed low Mn and low Ni high strength steel. Materials Science and Engineering: A. 2021. Vol. 825. 141899. DOI: 10.1016/j.msea.2021.141899 7. Yoon Y. C., Lee S. I., Oh D. K., Hwang B. Microstructure and low-temperature toughness of intercritically annealed Fe–9Mn-0.2 C Medium-Mn steels containing Al, Cu, and Ni. Materials Science and Engineering: A. 2022. Vol. 854. 143804. DOI: 10.1016/j.msea.2022.143804 8. Bansal G. K., Madhukar D. A., Chandan A. K., Ashok K., Mandal G. K., Srivastava V. C. On the intercritical annealing parameters and ensuing mechanical properties of low-carbon medium-Mn steel. Materials Science and Engineering: A. 2018. Vol. 733. pp. 246–256. DOI: 10.1016/j.msea.2018.07.055 9. Trang T. T. T., Heo Y. U. The role of austenite stability on the change of fracture mode in a dual-phase medium Mn steel having a lamellar microstructure. Materials Characterization. 2021. Vol. 178. 111264. DOI: 10.1016/j.matchar.2021.111264 10. Gibbs P. J., De Moor E., Merwin M. J., Clausen B., Speer J. G., Matlock D. K. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metallurgical and Materials Transactions A. 2011. Vol. 42. pp. 3691–3702. DOI: 10.1007/s11661-011-0687-y 11. Kamoutsi H., Gioti E., Haidemenopoulos G. N., Cai Z., Ding H. Kinetics of solute partitioning during intercritical annealing of a medium-Mn steel. Metallurgical and Materials Transactions A. 2015. Vol. 46. pp. 4841–4846. DOI: 10.1007/s11661-015-3118-7 12. Sun B., Fazeli F., Scott C., Brodusch N., Gauvin R., Yue S. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels. Acta Materialia. 2018. Vol. 148. pp. 249–262. DOI: 10.1016/j.actamat.2018.02.005 13. Xiao Q., Xie Y., Hu F., Hu C. Сurrent status and trends of low-temperature steel used in Polar Regions. Materials. 2024. Vol. 17, Iss. 13. 3117. DOI: 10.3390/ma17133117. 14. Gürol U., Karadeniz E., Çoban O., Kurnaz S. C. Casting properties of ASTM A128 Gr. E1 steel modified with Mn-alloying and titanium ladle treatment. China Foundry. 2021. Vol. 18. pp. 199-206. DOI: 10.1007/s41230-021-1002-1 15. Mijangos D., Mejia I., Cabrera J. M. Influence of microalloying additions (Nb, Ti, Ti/B, V and Mo) on the microstructure of TWIP steels. Metallography, Microstructure, and Analysis. 2022. Vol. 11, Iss. 3. pp. 524–536. DOI: 10.1007/s13632-022-00871-w 16. Chaykin A. V. Scientific foundations of innovative technologies for furnace and out-of-furnace processing of iron and steel for critical castings. Saint Petersburg: Izdatelstvo “Naukoemkie tekhnologii”, 2022. 245 p. 17. Siafakas D., Matsushita T., Lauenstein Å., Ekengård J., Jarfors, A. E. W. The influence of deoxidation practice on the as-cast grain size of austenitic manganese steels. Metals. 2017. Vol. 7, Iss 6. 186. DOI: 10.3390/met7060186 18. Siafakas D., Matsushita T., Lauenstein Å., Ekerot S., Jarfors A. E. W. A particle population analysis in Ti- and Al-deoxidized Hadfield steels. International Journal of Cast Metals Research. Vol. 31, Iss. 3. pp. 125–134. DOI: 10.1080/13640461.2017.1379262 19. Sysoev A. M., Bakhmetev V. V., Kolokoltsev V. M. Refining and modification of 110G13L steel with a titanium-boron-calcium complex. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2008. No. 1. pp. 43–45. 20. Klimova-Korsmik O. G., Mendagaliyev R. V., Tsibulskiy I. A., Zotov O. G., Korsmik R. S., Lebedeva N. V. Effect of heat treatment on structure and properties of martensite stainless steel for ice-class ships obtained by direct laser deposition method. Materials Science Forum. Trans Tech Publications Ltd, 2021. Vol. 1016. pp. 725–731. DOI: 10.4028/www.scientific.net/MSF.1016.725 21. El-Bitar T. A., El-Banna E. M. Improvement of austenitic Hadfield Mn-steel properties by thermomechanical processing. Canadian Metallurgical Quarterly. 2000. Vol. 39, Iss. 3. pp. 361–368. DOI: 10.1179/cmq.2000.39.3.361 22. Dang J., An Q., Lian G., Zuo Z., Li Y., Wang H., Chen M. Surface modification and its effect on the tensile and fatigue properties of 300M steel subjected to ultrasonic surface rolling process. Surface and Coatings Technology. 2021. Vol. 422. 127566. DOI: 10.1016/j.surfcoat.2021.127566 23. Arapov S. L., Belyaev S. V., Kosovich A. A., Partyko E. G., Stepanenko N. A., Yuriev P. O., Mansurov Y. N. Application of mathematical statistics to improve Hadfield steel casting impact strength. Metallurgist. 2023. Vol. 66. pp. 1083–1091. DOI: 10.1007/s11015-023-01421-7 24. Panchal K. Life improvement of Hadfield manganese steel castings. International Journal of Scientific Development and Research. 2016. Vol. 5, Iss. 1. pp. 817–825. 25. GOST 21357-87. Cold-resistant and wear-resistant steel castings. General specifications. Introduced: 01.07.1988. 26. GOST 977-88. Steel castings. General specifications. Introduced: 01.01.1990. 27. GOST 27870-75. Ferrous secondary metals. General technical requirements. Introduced: 01.07.1977. 28. GOST 4755-91. Ferromanganese. Specification and conditions of delivery. Introduced: 01.01.1997. 29. GOST 1415-93. Ferrosilicium. Specification and conditions of delivery. Introduced: 01.01.1997. 30. GOST 4756-91. Ferrosilicomanganese. Specification and conditions of delivery. Introduced: 01.01.1997. 31. GOST R 54153-2010. Steel. Method of atomic emission spectral analysis. Introduced: 01.01.2012. 32. GOST 9454-78. Metals. Method for testing the impact strength at low, room, and high temperature. Introduced: 01.01.1979. 33. GOST 1497-84. Metals. Methods of tension test. Introduced: 01.01.1986. 34. GOST 9012-59. Metals. Method of Brinell hardness measurement. Introduced: 01.01.1960. 35. GOST 5639-82. Steels and alloys. Methods for detection and determination of grain size. Introduced: 01.01.1983. |