Журналы →  Gornyi Zhurnal →  2025 →  №11 →  Назад

RISK MANAGEMENT AND GEODYNAMIC SAFETY OF FIELD DEVELOPMENT
Название Numerical 3D model of promising site of the Khibiny Massif as a rockburst hazard prediction framework
DOI 10.17580/gzh.2025.11.10
Автор Avetisyan I. M., Dmitriev S. V., Nazarchuk O. V.
Информация об авторе

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

T. A. Vasilenko, Chief Researcher, Doctor of Engineering Sciences, tvasilenko@mail.ru

 

Joint Institute for Nuclear Research, Dubna, Russia

A. K. Kirillov, Leading Researcher, Doctor of Engineering Sciences

 

Geotechnical Bureau LLC, Saint-Petersburg, Russia

M. A. Vilner, Chief Specialist, Candidate of Engineering Sciences

 

SUEK JSC, Moscow, Russia

A. A. Meshkov, Technical Director, Candidate of Engineering Sciences


SUEK-Kuzbass JSC, Leninsk-Kuznetsky, Russia

N. L. Galsanov, Technical Director, Candidate of Engineering Sciences

Реферат

Coal seam methane significantly limits productivity and safety of underground coal mining, causing explosions, coal and gas emissions, and long-term post-mining gas migration. The rate of gas release is determined by the gas content and permeability of a seam, which depends on the coal microstructure. This study analyzes the changes in permeability and methane transfer in geodynamically active zones and tectonic fault zones compared to undisturbed areas. It also explores the mechanisms of methane migration to surface along tectonic faults. Using the example of Kuzbass coals, the low-temperature nitrogen adsorption, small-angle neutron scattering and pulsed spectroscopy methods were used to estimate the degasification duration using fractal models that consider closed porosity. Numerical stress–strain modeling is also performed to predict the change in permeability depending on rock pressure. Such approach allows optimization of degasification, better prediction of outburst hazards and science-based ground control. The modeling involved such basic factors as: geomechanical properties of coal and host rocks (Young’s modulus, Poisson’s ratio, compression strength); magnitude and direction of rock pressure (horizontal and vertical stresses); jointing and anisotropy of coal seams (permeability along and across the strike); flow dynamics (impact of methane and water on stresses and strains). The research shows that faults greatly influence permeability and gas release in coal seams, and the use of the fractal models improves precision of predictions. The research results are useful for the enhancement of mining safety.

Ключевые слова Coal seam permeability, tectonic faults, geodynamically active zones, coal seam degasification, tectonically stressed zones, tectonically destressed zones, numerical modeling, stress–strain behavior
Библиографический список

1. Khokhlov S., Abiev Z., Makkoev V. The choice of optical flame detectors for automatic explosion containment systems based on the results of explosion radiation analysis of methane- and dust-air mixtures. Applied Sciences. 2022. Vol. 12, Iss. 3. ID 1 515.
2. Gendler S. G., Stepantsova A. Yu., Popov M. M. Justification on the safe exploitation of closed coal warehouse by gas factor. Journal of Mining Institute. 2025. Vol. 272. pp. 72–82.
3. Shvankin M. V., Bondarev A. V. Peculiarities of seam liables to rock-bumps in conditions hard-caving roof. Vestnik Nauchnogo tsentra VostNII po promyshlennoy i ekologicheskoy bezopasnosti. 2019. No. 2. pp. 81–88.
4. Kabanov E. I. Analysis of accidents risk in coal mines taking into account human factor. Gornyi Zhurnal. 2023. No. 9. pp. 48–54.
5. Zuev B. Yu., Istomin R. S., Kovshov S. V., Kitsis V. M. Physical modeling the formation of roof collapse zones in Vorkuta coal mines. Bulletin of the Mineral Research and Exploration. 2020. Vol. 162. pp. 225–234.
6. Li J., Xie H., Lu J., Gao M., Li B. et al. New permeability model of deep coal rock considering the structure and 3D stress compression-induced anisotropy. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2022. Vol. 8. DOI: 10.1007/s40948-022-00505-z

7. Shabarov A. N., Tsirel S. V., Morozov K. V., Rasskazov I. Yu. Concept of integrated geodynamic monitoring in underground mining. Gornyi Zhurnal. 2017. No. 9. pp. 59–64.
8. Baranov A.A., Andreeva N.V. Seismicity of tectonic structures of the South Polar Region. Journal of Mining Institute. 2025. Vol. 273. pp. 42–51.
9. Kotikov D. A., Shabarov A. N., Tsirel S. V. Connecting seism ic event distribution and tectonic structure of rock mass. Gornyi Zhurnal. 2020. No. 1. pp. 28–32.
10. Bondarev A. V., Shvankin M. V., Nikolashin S. Yu. Control of critical factors of the state of the massif at mining enterprises. Problemy upravleniya riskami v tekhnosfere. 2021. No. 4(60). pp. 13–18.
11. Alexeev A. D. Physics of Coal and Mining Processes. Boca Raton : CRC Press, 2012. 383 p.
12. Gavrilenk o Yu. N., Ermakov V. N., Krenida Yu. F., Ulitskiy O. A., Driban V. A. Manmade Consequences of Closure of Coal Mines in Ukraine. Donetsk : Nord-Press, 2004. 632 p.
13. Ka zanin O., Sidorenko A., Sidorenko S., Ivanov V., Mischo H. High productive longwall mining of multiple gassy seams: Best practice and recommendations. Acta Montanistica Slovaca. 2022. Vol. 27, Iss. 1. pp. 152–162.
14. Danilev S. M., Sekerina D. D., Danileva N. A. Localization of sites for the development of geomechanical processes in underground workings based on the results of the transformation and classification analysis of seismic data. Journal of Mining Institute. 2024. Vol. 266. pp. 260–271.
15. Rasskazov M., Tere shkin A., Tsoi D. , Konstantinov A., Miroshnikov V. et al. Research of the formation of zones of stress concentration and dynamic manifestations based on seismoacoustic monitoring data in the fields of the Kola Peninsula. Problems of Complex Development of Georesources : Proceedings of VIII International Scientific Conference. 2020. E3S Web of Conferences. 2020. Vol. 192. ID 01009.
16. Vasilenko T. A., Voloshina N. I., Kolchik I. E., Molodetskiy A. V., Podrukhin A. A. Research of methane maintenance in soil air in the area of geological faults output under the sediments. MIAB. 2016. No. 7. pp. 159–166.
1 7. Korotenko V. A., Grachev S. I., Kushakova N. P., Mulyavin S. F. Assessment of the influence of water saturation and capillary pressure gradients on size formation of two-phase filtration zone in compressed low-permeable reservoir. Journal of Mining Institute. 2020. Vol. 245. pp. 569–581.
18. Li F., Jiang B., Son g Y., Cheng G., L u G. Multifractal behavior of the micro- and mesopore structures of brittle tectonically deformed coals and its influence on methane adsorption capacity. Energy & Fuels. 2021. Vol. 35, Iss. 4. pp. 3042–3064.
19. Javadpour F. Nanopores and apparent pe rmeability of gas flow in mudrocks (shales and siltstone). Journal of Canadian Petroleum Technology. 2009. Vol. 48, Iss. 8. pp. 16–21.
20. Gao Q., Liu J., Huang Y., Li W., Shi R. et al. A critical review of coal permeability models. Fuel. 2022. Vol. 326. ID 125124.
21. Starikov G. P., Podrukhin A. A., Shazhko Ya. V. Assessment of time of hazardous methane concentration accumulation in closed spaces in the areas of closed mine allotments. Safety of Business Activities in Industrially Developed Regions : XII International Conference Proceedings. Kemerovo : KuzGTU, 2017.
22. Yang H., Liu Zh., Yu Z., Zhu M., Dong S h. et al. Fractal study on the nonlinear seepage mechanism during low-permeability coal water injection. Physics of Fluids. 2024. Vol. 36, No. 4. ID 043608.
23. Yan M., Yang F., Zhang B., Lin H., Li S. H. Influence of pore structure characteristics of low permeability coal on gas nonlinear seepage. Natural Resources Research. 2024. Vol. 33, No. 3. pp. 1209–1225.
24. Xu Ch., Ma S., Wang K., Yang G., Zhou X. et al. Stress and permeability evolution of highgassy coal seams for repeated mining. Energy. 2023. Vol. 284. ID 128601.
25. Lukichev S. V., Nagovitsyn O. V. Computer technology of engineering support of mining operations during development of deposits of hard mineral resources. Gornyi Zhurnal. 2010. No. 9. pp. 11–15.
26. Verbilo P., Karasev M., Belyakov N., Iovl ev G. Experimental and numerical research of jointed rock mass anisotropy in a three-dimensional stress field. Rudarsko-geološkonaftni zbornik. 2022. Vol. 37, No. 2. pp. 109 –122.
27. Anistratov K. Yu., Nagovitsyn O. V., Nagovitsyn G. O., Vasileva M. O. Designing a digital model of a coal deposit in the MINEFRAME mining and geological information system. Gornaya Promyshlennost. 2024. No. 3. pp. 64–69.
28. Gavrilov V. L., Khoyutanov E. A. Particularities of modelling of structurally complicated solid mineral deposit. MIAB. 2019. Special issue 37. pp. 122–131.
29. Shilova T. V., Rybalkin L. A., Yablokov A. V. Coal permeability anisotropy estimation by filtration experiments and fracture analysis results. Interexpo Geo-Sibir. 2020. No. 2. pp. 226–233.
30. Liu J. Research and application of mineral dep osit modeling technology. Modelling, Masurement and Control C. 2017. Vol. 78, No. 4. pp. 478–495.
31. Batugin A. S. Geodynamic effects of the critically stressed state of the Earth’s crust. Gornaya Promyshlennost. 2023. No. S1. pp. 14–21.
32. Zherlygina E. S., Kuranova M. E., Gusev V. N., Odintsov E. E. Identification of hazardous sites based on studying the development of man-made fractures within the rock mass. Gornaya Promyshlennost. 2025. No. 1. pp. 162–169. DOI: 10.30686/1609-9192-2025-1-162-169
33. Kazanin O. I., Meshkov A. A., Sidorenko A. A. Prospects for development of a technological structure of underground coal mines. MIAB. 2022. No. 6-1. pp. 35–53. DOI: 10.25018/0236_1493_2022_61_0_35

Language of full-text русский
Полный текст статьи Получить
Назад