| Название |
Sulfide stress cracking resistance of alloy steel rods and pumping rods:
materials, methods, and design approach |
| Информация об авторе |
Perm National Research Polytechnic University, Perm, Russia1 ; ELKAM-Neftemash, Perm, Russia2
S. N. Moltsen, Postgrafuate Student, Dept. of Metal Science and Heat Treatment of Metals1, Quality Director2, e-mail: stanislav@vputehod.ru A. V. Kravchenko, Postgraduate Student, Dept. of Metal Science and Heat Treatment of Metals1, Head of Quality Control Division2, e-mail: andrew@vputehod.ru
Perm National Research Polytechnic University, Perm, Russia Yu. N. Simonov, Dr. Eng., Prof., Head of the Dept. of Metal Science and Heat Treatment of Metals, e-mail: simonov@pstu.ru M. Yu. Simonov, Cand. Eng., Director of the Joint Laboratory of Fundamental Research in Metal Science, e-mail: simonov@pstu.ru |
| Реферат |
This article presents the results of a study on the sulfide stress cracking (SSC) resistance of sucker rods and polished rods used in sucker rod pumping (SRP) systems. The materials investigated include 15Kh2GMF steel (in strength groups D and K as per GOST 31825-2012), 15Kh3MA steel, and 40Kh steel, all of which are widely used in the serial production of downhole pumping equipment components. An accelerated testing methodology was developed to evaluate hydrogen-induced degradation of mechanical properties in H2S environments within 48 hours. The results of this accelerated method showed strong correlation with those obtained using the standard NACE TM0177, Method A. The findings demonstrate that strength group K (15Kh2GMF-K) and 40Kh steel exhibit high resistance to SSC at stress levels up to 182 MPa, while strength group D steels (15Kh2GMF-D, 15Kh3MA) show significant plasticity loss and premature failure under the same conditions. The study also proposes engineering solutions aimed at reducing operational stress and mitigating SSC risks, including the implementation of stress relief grooves (stress concentrator eliminators) and their hermetic sealing. These results provide a sound basis for the selection of optimal materials and design strategies for the reliable operation of oilfield equipment in hydrogen sulfide–containing service environments. |
| Библиографический список |
1. Saprykina L. E., Bobylev A. I. Analysis of the causes of corrosion failure of pump rods and development of recommendations for its prevention. Severgeoecotech-2024: Proceedings of the XXV International Youth Scientific Conference. In 2 parts, Ukhta, March 28-29, 2024. Ukhta : Ukhta State Technical University, 2024. pp. 400–410. 2. Lunin D. A., Minchenko D. A., Noskov A. B., Klyushin I. G. et al. Field experience in operating downhole equipment in hydrogen sulfide-containing environments. Setevoe izdanie "Neftegazovoe delo". 2023. No. 3. pp. 47–92. DOI: 10.17122/ogbus-2023-3-47-92 3. GOST 31825-2012. Sucker rods, mouth stocks, and couplings for them. Specifications. Introduced: 01.01.2014. 4. GOST 4543-2016. Structural alloy steel products. Specifications. Introduced: 01.10.2017. 5. GOST 18895-97. Steel. Method of photoelectric spectral analysis. Introduced: 01.01.1998. 6. GOST 1497-2023. Metals. Methods of tension test. Introduced: 01.07.2024. 7. GOST 9013-59. Metals. Method of measuring Rockwell hardness. Introduced: 01.01.1969. 8. Kravchenko A. V., Moltsen S. N., Simonov Yu. N., Sokolov I. Yu., Turkmenbay D. A. Evaluation of the durability of pump rods using accelerated and standard testing methods in an H2S environment. Proceedings of the V International Industry Conference “Materials and Technologies in the Oil and Gas Industry” (St. Petersburg, 2025). St. Petersburg : Peter the Great St. Petersburg Polytechnic University, 2025. pp. 43–44. 9. Yurchenko A. N., Simonov Yu. N., Efimova O. V., Nikitin D. A., Kravchenko A. V. Oxygen depolarization stress corrosion cracking of 40Kh steel. Stal. 2023. No. 4. pp. 32–36. 10. Moltsen S. N., Kravchenko A. V., Simonov Yu. N., Polezhaev R. M. Increasing the durability of threaded connections of rods under cyclic loading. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovvedenie. 2021. Vol. 23, No. 2. pp. 27–35. DOI: 10.15593/2224-9877/2021.2.04 11. Kravchenko A. V., Moltsen S. N., Nikitin D. A., Nekrasova T. V. Optimization of heat treatment of 30Kh13 steel for oil industry to operate in hydrogen sulfide environment: analysis of accelerated and standard tests. Chernye Metally. 2024. No. 10. pp. 51–57. DOI: 10.17580/chm.2024.10.08 12. Chalfoun D. R., Kappes M. A., Perez T. E., Otegui J. L., Iannuzzi M. The role of nickel in low alloy steels exposed to H2S-containing environments. Part I: Trench formation at the open-circuit potential. Corrosion. 2023. Vol. 79, Iss. 12. pp. 1345–1359. 13. Shtremel M. A. Destruction. In 2 books. Book 1. Destruction of material: monograph. Moscow : Izdatelskiy dom "MISiS", 2014. 670 p. 14. Heidersbach R. Metallurgy and corrosion control. Oil and Gas Production. 2nd ed. Wiley, 2018. 368 p. 15. Groysman А. Corrosion for everybody. Dordrecht: Springer, 2010. 378 p. DOI: 10.1007/978-90-481-3477-9 16. Averyanov G. Corrosion protection in the oil and gas industry: trends and challenges. Neft i gaz Sibiri. 2019. No. 3 (36). pp. 58. 17. Wasim M., Djukic M. B. External corrosion of oil and gas pipelines: a review of failure mechanisms and predictive preventions. J. Nat. Gas Sci. Eng. 2022. Vol. 100. 104467. DOI: 10.1016/j.jngse.2022.104467 18. Brown B. F. Stress corrosion cracking control measures. Washington, DC: National Bureau of Standards, 1977. 96 p. 19. Pumpyansky D. A., Pyshmintsev I. Yu., Vydrin A. V. et al. Fundamentals of metal science and production technology of pipes from corrosion-resistant steel. Moscow : Metallurgizdat, 2023. 682 p. 20. Kondratiev S. Yu., Alkhimenko A. A., Kharkov A. A. et al. Criteria for accelerated assessment of the susceptibility of pipe steels to stress corrosion cracking under oil production conditions. Metallovedenie i termicheskaya obrabotka metallov. 2021. No. 10 (796). pp. 16–22. 21. Pesin M. V., Pavlovich A. A., Melnikov S. A. Innovative technological process for hardening drill pipe threads. Innovations in Mechanical Engineering (InMash-2020): Proceedings of the XI International Scientific and Practical Conference, Biysk, October 22-23, 2020: Izdatelstvo AltGTU imeni I. I. Polzunova, 2020. pp. 94–98. |