Журналы →  Materialy Elektronnoi Tekhniki →  2010 →  №4 →  Назад

Materials science and technology. Semiconductors
Название The peculiarities of internal getter formation in nitrogen doped dislocation free silicon wafers
Автор М. V. Mezhennyi, М. G. Milvidskii, V. Ya. Resnick
Информация об авторе M. V. Mezhennyi, M. G. Milvidskii, OAO «Giredmet»; V. Ya. Resnick, Insitute for Chemical Problems of Microelectronics
Реферат
The peculiarities of defect generation in nitrogen doped dislocation-free silicon wafers during multistage internal gettering treatment inclusive rapid thermal annealing (RTA) have been studied by optical microscopy and transmission electron microscopy methods. Silicon wafers 200 mm in diameter with <100> orientation, p-type of conductivity, a 10—12 Ohm ⋅ cm resistivity and a nitrogen content of [N] = 1,6 ⋅ 1014 сm-3 and oxygen content of [Oi] = (6—7) × 1017 сm-3 have been studied. It is shown that the use of standard RTA conditions (1250 °С/20 sec. in Ar ambient) allows one to generate necessary defect medium in the wafer bulk during the subsequent precipitation heat treatments but does not provide for the formation of a thick enough defect-free near-surface layer. Generating a defect-free near-surface layer of necessary thickness in the wafers was achieved by the introduction of additional preliminary RTA stage in oxygen ambient into the standard multistage heat treatment diagram. Analysis of possible reasons of the observable phenomena is given.
Ключевые слова Free dislocation silicon, microscopy, rapid thermal annealing, getter, heat treatment.
Библиографический список

1. Nakai, K. Oxygen precipitate behavior of nitrogen−doped CZ−Si crystals / K. Nakai, Y. Inoue, H. Yokota, J. Takahashi, K. Kitahara, A. Ikari, Y. Ohta, M. Hashebe, W. Ohashi // Proc. Kazusa Academia Park Forum on the Silicon and Technology of Silicon Materials. − Chiba (Japan), 1999. − P. 192—215.
2. Voronkov, V. V. Multiplicity of nitrogen species in silicon: the impact on vacancy trapping / V. V. Voronkov, R. Falster // Solid State Phen. − 2008. − V. 131—133. − P. 219—224.
3. Yang, D. Observation of vacancy enhancement during rapid thermal annealing in nitrogen / D. Yang, R. Fan, Y. Shen, D. Tian, L. Li, D. Que // High Purity Silicon VI; SPJH V ECS Proc. − 2000. − V. 2000−17. − P. 357—364.
4. Mezhennyy, M. V. Vliyanie bystrogo termicheskogo otzhiga na osobennosti defektoobrazovaniya v plastinakh kremniya pri sozdanii effektivnogo vnutrennego gettera / M. V. Mezhennyy, M. G. Mil'vidskiy, V. YA. Reznik // Tez. V Mezhdunar. konf. po aktual'nym problemam fiziki i materialovedeniya, tekhnologii i diagnostiki kremniya, nanometrovykh struktur i priborov na ego osnove (Kremniy−2008). − CHernogolovka, 2008.
5. Voronkov, V. V. Vacancy and self−interstitial concentration incorporated into growing silicon crystals / V. V. Voronkov, R. Falster // J. Appl. Phys. − 1999. − V. 86. − P. 5975—5982.
6. Falster, R. Vacancy−assisted oxygen precipitation phenomena in Si / R. Falster, D. Gambaro, M. Olmo, M. Cornara, H. Korb // Mater. Res. Soc. Symp. Proc. − 1998. − V. 510. − P. 37.
7. Falster, R. On the properties of the intrinsic point defects in silicon: A perspective from crystal growth and wafer processing / R. Falster, V. V. Voronkov, F. Quast // Phys. status solidi (b). − 2000. − V. 222. − P. 219—244.

8. Falster, R. Gettering in silicon: fundamentals and resent advances / R. Falster // Semiconductor Fabtech. − 2001. − V. 13. − P. 187—193.
9. Aihara, K. Enhanced nucleation of oxide precipitates during Czochralski silicon crystal growth with nitrogen doping / K. Aihara, H. Takeno, Y. Hayaroizu, M. Tamatsuka, T. Masui // J. Appl. Phys. − 2000. − V. 88. − P. 3705.
10. Yang, D. Thermal stability of oxygen precipitates in nitrogen-doped Czochralski silicon / D. Yang, H. Wang, X. Yu, X. Ma, D. Que // Solid state phen. − 2004. − V. 95—96. − P. 111—116.
11. Yu, X. Oxygen precipitation of nitrogen−doped Czochralski silicon subjected to multi−step thermal process / X. Yu, D. Yang, X. Ma, D. Que // High Purity Silicon IX: ECS Proc. − 2006. − V. 4218. − P. 89—96.

Language of full-text русский
Полный текст статьи Получить
Назад