ArticleName |
Low-temperature autoclave hydrometallurgical processing of refractory gold-bearing sulfide materials |
ArticleAuthorData |
Science and Technology Centre “Gidrometallurgiya” Ltd
A. Yu. Lapin, Technical Director G. A. Bitkov, Researcher, Ya. M. Shneerson, General Director, e-mail: ims@gidrometall.ru |
Abstract |
The results of technological and kinetic studies on lowtemperature pressure oxidation of pyrite gold concentrate are presented. The possibility of almost complete decomposition of refractory sulfide minerals, primarily pyrite, during leaching at temperature range 110–150 °C under oxygen pressure of not more than 1.0 MPa is shown. An obligatory conditions for the process are fine grinding of the concentrate to at least 80% minus 10–15 microns, and a preliminary removal of the carbonate component. The reaction that limits the rate of oxidation of the main mineral — pyrite, is the stage of its chemical interaction with the oxidant. Elemental sulfur, which is one of the oxidation products, does not form conglomerates with pyrite particles due to the dispersive component of the oxide concentrate. The parameters of the process that allows — while treating of autoclaved cake with alkaline reagent and its subsequent sorption cyanidation — to achieve gold recovery in the commercial product to 97–98% with low consumption of cyanide, which corresponds to the same value in the processing of the same materials with conventional high-temperature autoclave technology. The method can successfully compete with high-temperature process, because of its implementation requires less complicated and much less expensive main and auxiliary autoclave equipment. |
References |
1. Benevolskiy B. I. Zoloto Rossii (Gold of Russia). Moscow, 2002. 462 p. 2. Lodeyshchikov V. V. Tekhnologiya izvlecheniya zolota i serebra iz upornykh rud : v 2 t (Technology of Gold and Silver Extraction from Refractory Ores. In two volumes). Irkutsk, 1999. 786 p. 3. Naboychenko S. S., Shneerson Ya. M., Kalashnikova M. I., Chugaev L. V. Avtoklavnaya gidrometallurgiya tsvetnykh metallov (Pressure Hydrometallurgy of Non-ferrous Metals). Ekaterinburg, 2009. Vol. 2. pp. 351–382. 4. Kloiber O., Johnson G., Palmer C., Swarts A., Brits J. Tati hydrometallurgical demonstration plant project. Proc. 10th Nickel/Cobalt Conf. ALTA 2005. Perth. Australia. May 16–18, 2005. Melbourne : ALTA Metallurgical Services, 2005. 5. G. D. Johnson, N. Streltsova (Australia). Method for the processing of copper minerals. Patent US, No. 5917116. Int. Cl. C 22 B 15/00. Published 29.06.1999. 5 p. 6. I. J. Corrans, J. E. Angove (Australia). Activation of a mineral species. Patent US, No. 5232491. Int. Cl. C 22 B 11/08. Published 03.08.1993. 5 p. 7. S. Fugleberg, A. Jarvinen (Finland). Method of leaching zinc concentrate under atmospheric conditions. Patent RF, No. 2198942 MKI S 22 V 19/00. Asserted 12.08.1996. Published 20.02.2003. 5 p. 8. Takkala Kh. Obogashchenie Rud. Tsvetnye Metally. Spetsialnyy vypusk — Mineral Processing. Non-ferrous Metals. Special Issue. June, 2001. pp. 65–68. 9. Chubarov A. V., Belousova N. V., Drozdov S. V., Maksimenko V. V. Tsvetnye Metally — Non-ferrous Metals. 2010. No. 1. pp. 20–23. 10. Papangelakis V. G., Demopulos G. P. Canadian Metallurgical Quarterly. 1990. No. 29 (1). pp. 1–12. 11. Shneerson Ya. M., Onatskaya A. A., Krasnov A. L. Tsvetnye Metally —Non-ferrous Metals. 1982. No. 9. pp. 26–30. 12. Shneerson Ya. M., Onatskaya A. A., Borbat V. F. Obzornaya informatsiya. Tsentralnyy nauchno-issledovatelskiy institut ekonomiki i informatsii tsvetnoy metallurgi (An Overview. Central Research Institute of Economy and Information of Non-ferrous Metallurgy). Moscow, 1984. Iss. 2. p. 46. 13. Papangelakis V. G. Demopulos G. P. Hydrometallurgy. 1991. No. 26. pp. 309–325. 14. Smith J. M. Chemical engineering kinetics. 3rd ed. New York : McGraw-Hill, 1981. 676 p. 15. Gerlach J., Hahne H., Pawlek F. Z. Erzberg Metall Huttenw. 1966. Vol. 1, No. 19. pp. 66–74. |