ArticleName |
Free gold recovery from final treatment sluice concentrates tailings |
ArticleAuthorData |
Institute of Chemistry and Chemical Technology SB RAS (Krasnoyarsk, Russia):
Zashikhin A. V., Researcher, Candidate of Engineering Sciences, obog2006@ya.ru
Siberian Federal University (Krasnoyarsk, Russia):
Golsman D. A., Associate Professor, Candidate of Engineering Sciences, golsman_d@mail.ru Kondratyeva А. А., Senior Lecturer, ankondratieva@mail.ru
Anakon Ltd (St. Petersburg, Russia):
Krivonos A. S., Mineral Processing Engineer, krivonos@minstandart.com |
Abstract |
This paper covers the problem of free gold losses in the processing (final treatment) of sluice concentrates at a number of Russian plants. The current processing circuits for sluice concentrates, formed as a result of long-term operation of respective final treatment and testing facilities, are described, as well as the differences in ore dressing process stages caused by specific features of raw materials processed. The aim of this work is to demonstrate the relevance of improvements in processing systems, testing and concentration facilities for sluice concentrates. As a solution to the problem, the study suggests the application of separate storage and subsequent processing methods with account of respective specific features of those concentration products where gold losses are most likely to occur in the primary concentration process due to the inadequacy of concentrating machines or human errors. A testing system for final treatment products is suggested, enabling identification of the scale of gold losses and those specific features of raw materials that facilitate the loss of metal. Losses in final treatment of coarse gravity concentrates to the values required for ingot melting at relatively high-scale primary concentration and final treatment facilities are estimated at one hundred to one thousand grams per season or more. In certain cases, when facilitated by the human factor, gold losses in the trough discharge alone may reach several kilograms per season. Based on the testing results, secondary and primary processing systems for sluice concentrates were recommended and successfully applied, enabling the yield of final treatment tailings with gold contents several times below the planned processing values. |
References |
1. Zashikhin А. V., Guryanov А. Ye., Аnanenko K. Ye. Final gold concentration stage equipment engineering and operating experience. Obogashchenie Rud. 2013. No. 6. pp. 8–13. 2. Fedotov K. V., Nikolskaya N. I. Designing of concentrating plants. Moscow: Gornaya kniga, 2012. 536 p. 3. Adams M. D. Gold ore processing. Project development and operations. 2nd ed. Elsevier Science, 2016. 980 p. 4. Developments in mineral processing. Vol. 15. Advances in gold ore processing / M. D. Adams (ed.). Elsevier Science, 2005. 1076 p. 5. Preys V. K. Equipment and technology of sand sifting of alluvial gold deposits: A guidebook. Magadan: Kordis, 2002. 249 p. 6. Bogomyagkov A. A. The search for effective methods and technological schemes for final treatment of refractory gold-containing concentrates of alluvial deposits. Dissertation for the degree of Candidate of Engineering Sciences. Chita, 2008. 123 p. 7. Ananenko K. E. Optimization of technological schemes for final treatment of rough gold-bearing concentrates. Dissertation for the degree of Candidate of Engineering Sciences. Krasnoyarsk, 2011. 187 p. 8. Algebraistova N. K., Samorodskiy P. N., Kolotushkin D. M., Prokopyev I. V. Technology of gold recovery from goldbearing technogenic raw materials. Obogashchenie Rud. 2018. No. 1. pp. 33–37. DOI: 10.17580/or.2018.01.06. 9. Algebraistova N. K., Golsman D. A., Kolotushkin D. M., Prokopyev I. V. Technological evaluation of the stale tailings of the processing of gold-containing low-sulfide ore. Tsvetnye Metally. 2018. No. 5. pp. 25–30. DOI: 10.17580/tsm.2018.05.03. 10. Evdokimov S. I., Pan'shin A. M. Developing the technology for the effective final concentration of goldcontaining gravity concentrates. Izvestiya Vysshikh Uchebnykh Zavedeniy. Tsvetnaya Metallurgiya. 2009. No. 4. pp. 7–13. 11. Ananenko K. E., Vagner V. A., Bragin V. I., Golsman D. A. Technology of gold extraction from placer tailings. Gornyi Informatsionno-analiticheskiy Byulleten. 2010. No. 4. pp. 242–245. 12. Kuznetsov S. G., Ananenko K. E., Rodin I. A. Schemes for gold recovery using the module for conditioning with an open separate method of placer mining. Zolotodobycha. 2014. No. 192. URL: https://zolotodb.ru/articles/technical/11144 (accessed: 28.05.18). 13. Afanasenko S. I. Conditioning of sluice concentrates with fine gold without losses. Zoloto i Technologii. 2013. No. 2. URL: http://zolteh.ru/technology_equipment/dovodka-shlyuzovyh-kontsentratov-s-melkim-zolotom-bezpoter/ (accessed: 28.05.18). 14. Laplante A. R. A standardized test to determine gravity recoverable gold. Montreal: McGill University, 1996. 15. Cabri L. J., Rudashevsky N. S., Rudashevsky V. N., Gorkovetz V. Ya. Study of native gold from the Luopensulo deposit (Kostomuksha area, Karelia, Russia) using a combination of electric pulse disaggregation (EPD) and hydroseparation (HS). Minerals Engineering. 2008. Vol. 21, Iss. 6. pp. 463–470. 16. Karmazin V. I., Karmazin V. V. Magnetic, electrical and special methods of mineral processing: a textbook. In 2 vols. Moscow: Gornaya kniga, 2012. Vol. 1: Magnetic and electrical methods of mineral processing. 672 p. 17. Algebraistova N. K., Makshanin A. V., Burdakova E. A., Markova A. S. Ore dressing of precious metal bearing rocks in centrifugal machines. Tsvetnye Metally. 2017. No. 1. pp. 18–22. DOI: 10.17580/tsm.2017.01.03. 18. Afanasenko S. I., Lazaridi A. N. Practice of application of concentrators «Itomak» for extraction of fine, thin and bound gold from technogenic raw materials. Zolotodobycha. URL: https://zolotodb.ru/articles/placer/separation/10775 (accessed: 28.05.18). 19. Afanasenko S. I. Technology and equipment «Itomak». Zoloto i Technologii. 2013. No. 1. URL: http://zolteh.ru/technology_equipment/tehnologiya-i-oborudovanieitomak-put-k-povysheniyu-ekonomicheskoj-effektivnostizolotodobyvayushhego-predpriyatiya/ (accessed: 28.05.18). 20. Fatahi M. R., Farzanegan A. DEM simulation of laboratory Knelson concentrator to study the effects of feed properties and operating parameters. Advanced Powder Technology. 2017. Vol. 28, Iss. 6. pp. 1443–1458. DOI: 10.1016/j.apt.2017.03.011. 21. U-Tech shaker table RP-4 with magnetic separator URL: http://www.oro.walkingitaly.com/tusoro/da_esaminare/concentrazione/U-Tech-Shaker-Table-RP-4.htm (accessed: 30.05.18). 22. Kavchik B. K. Sieve analysis and determination of granulometric characteristics of alluvial gold. Guidelines. Irkutsk: Irgiredmet Publ., 2001. 11 p. 23. Bakulina L. P. Heavy mineral concentrate sampling and analysis of samples: training allowance. 2nd ed., revised. Ukhta: UGTU Publ., 2014. 126 p. 24. Kopchenova E. V. Mineralogical analysis of heavy minaral concentrates and ore concentrates. Moscow: Nedra, 1979. 247 p. 25. Panshin A. M., Yevdokimov S. I. Free gold recovery by magnetic-fluid separation method. Obogashchenie Rud. 2008. No. 6. pp. 18–23. 26. Panshin A. M. Evdokimov S. I. Theory and practice of recoverable auriferous materials processing using the method of magnetic fluid separation. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyi Zhurnal. 2009. No. 3. pp. 83–90. 27. Pat. USA 4267036. |