Журналы →  Obogashchenie Rud →  2019 →  №1 →  Назад

BENEFICIATION PROCESSES
Название Correlation between phosphate ore bond work index (Wi) and its chemical composition
DOI 10.17580/or.2019.01.02
Автор Hussin A. M. Ahmed, Ayman A. El-Midany
Информация об авторе

King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia:

Hussin A. M. Ahmed, Professor, Dr. Eng., hussien135@gmail.com (corresponding author)

 

Cairo University, Giza, Arab Republic of Egypt:

Ayman A. El-Midany, Professor, PhD, aelmidany@gmail.com

Реферат

The Bond work index (Wi) is an indicative parameter for ores grindability. It is used for mill design and estimation of grinding energy. It is affected by different parameters, some of which are related to the ore, such as heterogeneity, mineralogy, and grain size, while others are related to the grinding mechanism. In this study, the Bond Ball Mill Work Index of different phosphate ores was investigated as a function of the ore chemical composition. The results obtained showed that the Bond Ball Mill Work Index can be empirically expressed as a function of the ore chemical composition. This finding may serve as a rapid alternative for initial assessment of Wi for phosphate ores of known chemical compositions.

Ключевые слова Phosphate ore, chemical composition, Bond work index, grindability, grinding energy
Библиографический список

1. Hagin J., Harrison R. Phosphate rocks and partiallyacidulated phosphate rocks as controlled release P fertilizers. Fertilizer Research. 1993. Vol. 35, Iss. 1–2. pp. 25–31. DOI: 10.1007/bf00750217.
2. Al-Wakeel M. I. Effect of mechanical treatment on the mineralogical constituents of Abu-Tartour phosphate ore, Egypt. International Journal of Mineral Processing. 2005. Vol. 75, No. 1–2. pp. 101–112. DOI: 10.1016/j.minpro.2004.05.004.
3. Choi W. S. Grinding rate improvement using composite grinding balls in an ultra-fine grinding mill. Kinetic analysis of grinding. Powder Technology. 1998. Vol. 100, Iss. 1. p. 78. DOI: 10.1016/S0032-5910(98)00073-4.
4. Churchman C., Martinez J. Economic energy savings in new phosphoric acid plants. Phosphorus and Potassium. 1982. No. 117. pp. 30–37.
5. Conca J. L., Cubba R. Abrasion resistance hardness testing of rock materials. International Journal of Rock Mechanics and Mining Sciences. 1986. Vol. 23, Iss. 2. pp.141–149. DOI: 10.1016/0148-9062(86)90340-2.
6. Bond F. C. Crushing and grinding calculations. Part I. British Chemical Engineering. 1961. Vol. 6, No. 6. pp. 378–385.
7. Cske B., Rácz Á., Mucsi G. Determination of the Bond work index of binary mixtures by different methods. International Journal of Mineral Processing. 2013. Vol. 123. pp. 78–86. DOI: 10.1016/j.minpro.2013.05.004.
8. Deniz V. Relationships between Bond’s grindability (Gbg) and breakage parameters of grinding kinetic on limestone. Powder Technology. 2004. Vol. 139, Iss. 3. pp. 208–213. DOI: 10.1016/j.powtec.2003.11.006.
9. Ipek H., Ucbas Y., Hosten C. The Bond work index of mixtures of ceramic raw materials. Minerals Engineering. 2005. Vol. 18, Iss. 9. pp. 981–983. DOI: 10.1016/j.mineng.2004.12.014.
10. Kotake N., Shoji H., Hasegawa M., Kanda Y. The evaluation of the fine grindability of solid materials based on the work index. Journal of the Society of Powder Technology, Japan. 1994. Vol. 31, Iss. 9. pp. 626–630. DOI: 10.4164/sptj.31.626.
11. Ipek H., Ucbas Y., Hosten C., Yekeler M. Grinding of ceramic raw materials by a standard Bond mill: Quartz, kaolin and K-feldspar. Mineral Processing and Extractive Metallurgy (IMM Transactions. Section C). 2005. Vol. 114, Iss. 4. pp. 213–218. DOI: 10.1179/037195505x81042
12. Vaisberg L. A., Kazakov S. V., Shishkin E. V. Vibrational disintegration of solid materials in quasiresonant modes [Electronic source]. Proc. of the XXIX IMPC, Moscow, September 17–21, 2018. Pt. 2. Comminution & classification. Paper 81. pp. 40–48.
13. Wikedzi A., Peuker U. A., Mütze T., Shayo F. Impro ving the grinding performance through modelling and simulation [Electronic source]. Proc. of the XXIX IMPC, Moscow, September 17–21, 2018. Pt. 2. Comminution & classification. Paper 880. pp. 295–303.
14. Bbosa L. S., Hill H., Becker M., Mainza A. Correlation the information obtained from rock breakage tests [Electronic source]. Proc. of the XXIX IMPC, Moscow, September 17–21, 2018. Pt. 2. Comminution & classification. Paper 915. pp. 304–315.
15. Ahmed H. A. M., Aljuhani M. S., Drzymala J. Flotation after a direct contact of flotation reagents with carbonate particles — Part 2: Phosphate ore. Materials Testing. 2014. Vol. 56, Iss. 2. pp. 155–159. DOI: 10.3139/120.110540.
16. Ozkahraman H. T. A meaningful expression between Bond work index, grindability index and friability value. Minerals Engineering. 2005. Vol. 18, Iss. 10. pp. 1057–1059. DOI: 10.1016/j.mineng.2004.12.016.
17. Stanojlovic R., Sokolovic J., Stancev N. Dependence of the Bond work index of grindability on grain-size distribution of the starting sample of size class –3.35 mm. Mining & Metallurgy Engineering Bor. 2013. No. 4. pp. 69–84. DOI: 10.5937/mmeb1304069s.

Language of full-text русский
Полный текст статьи Получить
Назад