Журналы →  Eurasian mining →  2024 →  №1 →  Назад

PHYSICS OF ROCKS AND PROCESSES
Название Study of geodynamic processes in mineral mining using quasi-geoid based on wavelet analysis
DOI 10.17580/em.2024.01.08
Автор Kassymkanova Kh. M., Malinnikova O. N., Nurakynov S. M., Turekhanova V. B.
Информация об авторе

Satbayev University, Almaty, Kazakhstan

Kassymkanova Kh. M., Professor, Doctor of Engineering Sciences

 

Research Institute of Comprehensive Exploitation of Mineral Resources–IPKON, Moscow, Russia

Malinnikova O. N., Chief Researcher, Doctor of Engineering Sciences

 

Institute of Ionosphere, Almaty, Kazakhstan

Nurakynov S. M., Head of Institute

 

Al-Farabi Kazakh National University, Almaty, Kazakhstan

Turekhanova V. B., Candidate for a Doctor’s Degree, turekhanova_venera92@mail.ru

Реферат

This article offers proposals on the geoid model grid output format to ensure convenient application of the data in investigation of geodynamic processes during underground mining. With a view to improving the national geoid model, it is proposed to use the data of the detail general coverage gravimetric survey of the area of the country. These data are obtained within a reasonable time using the airborn gravimetry technology. The research findings allow creating a set of computer programs to implement the developed procedure in terms of the experimental data processing and to prove the usability of the procedure for the preliminary modeling of the geoid for the area of the Republic of Kazakhstan.
The study was supported by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan, Grant No. BR 21882366.

Ключевые слова Geodynamic processes, physical geodesy, coordinate systems, gravitational field, geoid, quasi-geoid, gravimetric height, modeling, coordinate transformation, regulation method
Библиографический список

1. Plag H.-P., Pearlman M. Global Geodetic Observing System. Meeting the Requirements of a Global Society on a Changing Planet in 2020. Berlin : Springer Berlin Heidelberg, 2009. No. 1. 332 p.
2. Karpik A. P., Kanushin V. F., Ganagina I. G., Goldobin D. N., Mazurova E. M. Comparison of satellite models of the GOCE project with various sets of independent ground-based gravity data. Bulletin of the Siberian State University of Geosystems and Technologies. 2014. No. 3 (27). pp. 21–35.

3. Geodesy and Geodynamics. Laboratoire de Géologie de l’Ecole normale supérieure. Available at: https://www.geologie.ens.fr/en/recherche-en/equipes-en/geodynamics-and-structures/ (accessed: 12.04.2024).
4. Nahavandchi H., Soltanpour A. Improved determination of heights using a conversion surface by combining gravimetric quasi/geoid and GPS-levelling height differences. Studia Geophysica et Geodaetica. 2006. Vol. 50. pp. 165–180.
5. Mandrikova O. V., Solovev I. S., Zalyaev T. L. Methods of analysis of geomagnetic field variations and cosmic ray data. Information Technologies. 2015. Vol. 21, No. 11. pp. 849–855.
6. Stolbova A. A. Operating speed of wavelet transform algorithms. New Information Technologies in Scientific Research : Proceedings of XXII All-Russian Conference of Students, Young Scientists and Specialists. 2017. pp. 173–174. ID 30521218.
7. Rafiei M., Niknam T., Khooban M. H. Probabilistic electricity price forecasting by improved clonal selection algorithm and wavelet preprocessing. Neural Computing and Applications. 2017. Vol. 28. pp. 3889–3901.
8. Turekhanova V. B. A modern approach to the determination of quasigeoid. Proceedings of International Conference of Students and Young Scientists — Farabi Alemi. 2018. pp. 185–186.
9. Kadlec M. Refining gravity field parameters by residual terrain modelling. PhD Theses, Pilsen, Czech Republic : University of West Bohemia, 2011. 150 p.
10. Iophis M. A., Odintsev V. N., Blokhin D. I., Sheinin V. I. Experimental investigation of spatial periodicity of induced deformations in a rock mass. Journal of Mining Science. 2007. Vol. 43, No. 2. pp. 125–131.
11. Mozzi P., Fontana A., Ferrarese F., Ninfo A., Campana S. et al. The Roman City of Altinum, Venice Lagoon, from remote sensing and geophysical prospection. Archaeological Prospection. 2016. Vol. 23, Iss. 1. pp. 27–44
12. Karpik A. P., Kanushin V. F., Ganagina I. G., Goldobin D. N., Mazurova E. M. The study of the spectral characteristics of global models of the Earth’s gravitational field obtained from the space missions CHAMP, GRACE and GOCE. Giroskopiya i Navigatsiya. 2014. No. 4(87). pp. 34–44.
13. Kanushin V. F., Karpik A. P., Ganagina I. G., Goldobin D. N., Kosarev N. S., et al. The study of modern global models of the gravitational field of the Earth. Novosibirsk : SSUGT, 2015. 270 p.
14. Zolotova E. V., Skogoreva R. N. Geodesy, Cadaster with Elementaries of Geoinformation Science : University Textbook. Moscow : Akademicheskiy Proekt, 2020. 532 p.
15. Thanh Ph. T., Kornienko A. Yu., Hoa Ph. T. Description of the global geoid models. Burning Issues of Land Use and Property Management. Proceedings of All-Russian Conference with International Participation. 2019. pp. 141–151. ID 38193336.
16. Dolgal A. S., Pugin A.V., Novikova P. N. History of the method for sourcewise approximations of geopotential fields. Izvestiya, Physics of the Solid Earth. 2022. Vol. 58, No. 2. pp. 149–171.
17. Rоmanchak V. M. Approximation by singular wavelets. System Analysis and Applied Information Science. 2018. No. 2. pp. 23–28.
18. Zhurkin I. G., Neiman Yu. M. Calculation methods in geodesy. Moscow : Nedra, 1988. 304 p.
19. Kim K. B., Yun H. S., Choi H. J. Accuracy evaluation of geoid heights in the national control points of south Korea using high-degree geopotential model. Applied Sciences. 2020. Vol. 10, Iss. 4. ID 1466.
20. Ince E. S., Barthelmes F., Reißland S., Elger K., Förste C. et al. ICGEM — 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data. 2019. Vol. 11, Iss. 2. pp. 647–674.
21. Sansò F., Reguzzoni M., Barzaghi R. Geodetic Heights. Switzerland : Springer Geophysics, 2019. DOI: 10.1007/978-3-030-10454-2
22. Oduyebo O. F., Ono M. N., Eteje S. O. Comparison of three gravimetricgeometric geoid models for best local geoid model of Benin City, Nigeria. International Journal of Advanced Engineering Research and Science. 2019. Vol. 6, Iss. 12. pp. 261–272.
23. Turekhanova V., Saliy S., Kudaibergenovet M. Application of the wavelet transformation theory in the algorithm for constructing a quasigeoid model. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022. No. 4. DOI: 10.33271/nvngu/2022-4/

Полный текст статьи Study of geodynamic processes in mineral mining using quasi-geoid based on wavelet analysis
Назад