Journals →  Chernye Metally →  2024 →  #7 →  Back

Mineral processing
ArticleName Possibility of using wet magnetic separation for pre-enrichment of finely crushed magnetite ore
DOI 10.17580/chm.2024.07.01
ArticleAuthor A. E. Pelevin
ArticleAuthorData

Ural State Mining University, Ekaterinburg, Russia

A. E. Pelevin, Dr. Eng., Prof., Associate Prof., Dept. of Mineral Processing, e-mail: a-pelevin@yandex.ru

Abstract

The possibility of using wet magnetic separation for preliminary enrichment of finely crushed ore has been studied. Using titanomagnetite ore with a particle size of 13+0 mm as an example, tests of dry and wet separation were carried out in three modes, ensuring a yield of nonmagnetic product from 15 to 35 %. Dry separation modes were changed by rotating the gate at a constant magnetic field induction of 0.15 Tesla. During wet separation, each mode corresponded to magnetic field inductions of 0.3, 0.35 and 0.4 Tesla. For dry enrichment, a separator with a top feed of material is used, for wet enrichment, a separator with a bottom feed of material is used. The use of wet magnetic separation for pre-enrichment has shown greater efficiency. With the same mass fraction of iron in tailings, their yield is greater when using wet magnetic separation compared to dry one. The obtained middling products of magnetic separations are enriched according to a three-stage grinding and enrichment scheme to obtain concentrates for pelletizing with a mass fraction of iron of 62%. The use of wet magnetic separation compared to dry one made it possible, in general, according to the titanomagnetite ore enrichment scheme, to increase the extraction of iron into the concentrate by 0.6–0.77 % while reducing the mass fraction of iron in the total tailings by 0.11–0.14 %. However, the quality of the concentrate has not changed.

keywords Wet magnetic separation, dry magnetic separation, preliminary enrichment, finely crushed ore, mass fraction of iron, enrichment tailings, iron recovery
References

1. Shibaeva D. N., Kompanchenko A., Tereschenko S. V. Analysis of the effect of dry magnetic separation on the process of ferruginous quartzites disintegration. Minerals. 2021. Vol. 11, Iss. 8. 797. DOI: 10.3390/min11080797
2. Sedinkina N. A., Gorlova O. E., Gmyzina N. V., Degodya E. Yu. Study of the possibility of enriching finely crushed magnetite ore by dry magnetic separation. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2019. Vol. 75. No. 5. pp. 564–572. DOI: 10.32339/0135-5910-2019-5-564-571
3. Liu J., Xue Z., Dong Z., Yang X. et al. Multiphysics modeling simulation and optimization of aerodynamic drum magnetic separator. Minerals. 2021. Vol. 11. Iss. 7. 680. DOI: 10.3390/min11070680
4. Tsypin E. F., Ovchinnikova T. Yu., Efremova T. A. Efficiency of using X-ray fluorescence separation for preliminary concentration of ores. Gornyi informatsionno-analiticheskiy byulleten. 2020. No. 3-1. pp. 431–442. DOI: 10.25018/0236-1493-2020-31-0-431-442
5. Ismagilov R. I., Yushina T. I., Dumov A. M. Contrast range examination of rich iron ore from Mikhailovskoe deposit and evaluation of possibility of its preliminary concentration via physical methods. CIS Iron and Steel Review. 2023. Vol. 26. pp. 22–32.
6. Ovchinnikova T. Yu., Efremova T. A., Tsypin E. F. On the lower limits of size classes during preliminary ore enrichment using X-ray fluorescence separation. Gornyi informatsionno-analiticheskiy byulleten. 2021. No. 11-1. pp. 328–337. DOI: 10.25018/0236_1493_2021_111_0_328
7. Feiwang Wang, Shitao Zhang, Zhiqiang Zhao, Likun Gao et al. Investigation of the magnetic separation performance of a low-intensity magnetic separator embedded with auxiliary permanent magnets. Minerals Engineering. 2022. Vol. 178. 107399. DOI: 10.1016/j.mineng.2022.107399
8. Xudong Li, Yuhua Wang, Dongfang Lu, Xiayu Zheng, Xuesong Gao. Optimization of airflow field for pneumatic drum magnetic separator to Improve the separation efficiency. Minerals. 2021. Vol. 11, Iss. 11. 1228. DOI: 10.3390/min11111228
9. Tereshchenko S. V., Shibaeva D. N. Ore quality improvement by pre-concentration: Theory and practice. Gornyi Zhurnal. 2020. No. 9. pp. 60–65.
10. Guiral-Vega J. S., Pérez-Barnuevo L., Bouchard J., Ure A. et al. Particle-based characterization and classification to evaluate the behavior of iron ores in drum-type wet low-intensity magnetic separation. Minerals Engineering. 2022. Vol. 186. 107755. DOI: 10.1016/j.mineng.2022.107755
11. Wang F., Zhao Z., Zhang S., Dai H. et al. Performance assessment of an innovative precise low-intensity magnetic separator. Minerals Engineering. 2022. Vol. 187. 107774. DOI: 10.1016/j.mineng.2022.107774
12. Guiral-Vega J. S., Pérez-Barnuevo L., Bouchard J., Ure A. et al. Particle-based characterization and process modeling to comprehend the behavior of iron ores in drum-type wet low-intensity magnetic separation. Minerals Engineering. 2024. Vol. 206. 108509. DOI: 10.1016/j.mineng.2023.108509
13. Xie S., Hu Z., Lu D., Zhao Y. Dry permanent magnetic separator: present status and future prospects. Minerals. 2022. Vol. 12. 1251. DOI: 10.3390/min12101251
14. Pelevin A. E., Tsypin E. F., Koltunov A. V., Komlev S. G. High-intensity magnetic separators with permanent magnets. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2001. Vol. 4-5. pp. 133–136.
15. Tripathy S. K., Singh V, Murthy Y. R., Banerjee P. K., Suresh N. Influence of process parameters of dry high intensity magnetic separators on separation of hematite. International Journal of Mineral Processing. 2017. Vol. 160. pp. 16–31. DOI: 10.1016/j.minpro.2017.01.007
16. Yakubaylik E. K., Ganzhenko I. M., Butov P. Yu., Kilin V. I. Reducing iron losses during wet separation in high fields. Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tekhnika i tekhnologii. 2016. Vol. 9. No. 8. pp. 1302–1310.
17. Pelevin A. E., Sytykh N. A. Increased magnetic field induction separators in titanium magnetite ore processing. Obogashchenie Rud. 2020. No. 2. pp. 15–20.
18. Pelevin A. E. Production of hematite concentrate from hematite–magnetite ore. Mining Informational and Analytical Bulletin. 2020. Vol. 3-1. pp. 422-430. DOI: 10.25018/0236-1493-2020-31-0-422-430
19. Kuskov V. B., Lvov V. V., Yushina T. I. Increasing the recovery ratio of iron ores in the course of preparation and processing. CIS Iron and Steel Review. 2021. Vol. 21. pp. 4–8.
20. Dmitriev A. N., Vitkina G. Yu., Petukhov R. V., Kornilkov S. V. et al. The characteristic of ores and concentrates of the open society “EVRAZ KGOK”. Advanced Materials Research. 2013. Vol. 834-836. pp. 364–369. DOI: 10.4028/www.scientific.net/AMR.834-836
21. Kornilkov S. V., Dmitriev A. N., Pelevin A. E., Yakovlev A. M. Separate processing of ore at Gusevogorsky deposit. Gornyi Zhurnal. 2016. No. 5. pp. 86–90.
22. Pilov P. I. Optimization of mineral processing parameters based on the kinetics of separation processes. Gornyi informatsionno-analiticheskiy byulleten. 2007. No. 7. pp. 396–401.
23. Osipova N. V. Investigation of the possibility of obtaining concentrate production targets based on a mathematical model of an ferrum ore processing site. CIS Iron and Steel Review. 2023. Vol. 25. pp. 4–9.
24. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Mining Informational and Analytical Bulletin. 2021. Vol. 11-1. рр. 293–305. DOI: 10.25018/0236_1493_2021_111_0_293
25. Fan Yi, Luzheng Chen, Jianwu Zeng, Yaxiong Jiang et al. Separation characteristics of dry high-intensity drum magnetic separator. Minerals Engineering. 2022. Vol. 189. 107861. DOI: 10.1016/j.mineng.2022.107861
26. Shuaiping Shen, Zhitao Yuan, Jiongtian Liu, Qingyou Meng et al. Preconcentration of ultrafine ilmenite ore using a superconducting magnetic separator. Powder Technology. 2020. Vol. 360. pp. 1–9. DOI: 10.1016/j.powtec.2019.09.074
27. Ebrahimi M., Azimi E., Nasiri Sarvi M., Azimi Y. Hybrid PSO enhanced ANN model and central composite design for modelling and optimization of Low-Intensity magnetic separation of hematite. Minerals Engineering. 2021. Vol. 170. 106987. DOI: 10.1016/j.mineng.2021.106987
28. Liren Han, Zhiyong Cheng, Dongfang Lu. Separation analysis of new magnetic separator for pre-concentration of ilmenite particles. Minerals. 2022. Vol. 12, Iss. 7. 837. DOI: 10.3390/min12070837
29. Vaisberg L. A., Dmitriev S. V., Mezenin A. O. Controllable magnetic anomalies in mineral proces sing technologies. Gornyi Zhurnal. 2017. No. 10. pp. 26–32.
30. Altieres Marçal Frade, José Aurélio Medeiros da Luz. Optimization of screen dewatering through dynamic control of frequency. Research, Society and Development. 2022. Vol. 11. Nо. 7. 29823. DOI: 10.33448/rsd-v11i7.29823
31. Zhanfu Li, Peiyu Jia, Kunyuan Li, Xin Tong et al. Study on screening performance and parameter optimization of vibrating-dewatering screen. Advances in Mechanical Engineering. 2021. Vol. 13, Iss. 9. DOI: 10.1177/16878140211046580
32. Carlos Cacciuttolo, Edison Atencio. An alternative technology to obtain dewatered mine tailings: safe and control environmental management of filtered and thickened copper mine tailings in Chile. Minerals. 2022. Vol. 12, Iss. 10. 1334. DOI: 10.3390/min12101334
33. Kosoy G. M., Vinnikov A. Ya. Fine hydraulic screening of ground ores on a multi-frequency screen by Kroosh Technologies: in-process testing. Tsvetnye Metally. 2021. No. 6. pp. 10–15.
34. Palaniandy S., Halomoan R, Ishikawa H. TowerMill circuit performance in the magnetite grinding circuit – The multi-component approach. Minerals Engineering. 2019. Vol. 133. pp. 10–18. DOI: 10.1016/j.mineng.2018.12.019
35. Pelevin A. E., Sytykh N. A. Efficiency of screens and hydrocyclones in closed-cycle grinding of titanomagnetite ore. Mining Informational and Analytical Bulletin. 2022. Vol. 5. рр. 154-166. DOI: 10.25018/0236_1493_2022_5_0_154

Language of full-text russian
Full content Buy
Back