Journals →  Chernye Metally →  2024 →  #7 →  Back

Preparation of raw materials
ArticleName The influence of a mixture of nepheline, red mud and calcinated coke on the strength of iron ore pellets
DOI 10.17580/chm.2024.07.02
ArticleAuthor A. B. Lebedev, H. L. Noah, Kh. Ya. Martines, D. A. Balandinsky
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia

A. B. Lebedev, Cand. Eng., Researcher, Research Center “Resource Processing”, e-mail: 2799957@mail.ru

Kh. Ya. Martines, Postgraduate Student, Dept. of Industrial Economics, e-mail: s233201@stud.spmi.ru
D. A. Balandinsky, Postgraduate Student, Dept. of Chemical Technologies and Energy Processing, e-mail: s235031@stud.spmi.ru

 

Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia1 ; Maximo Gomez Baez University, Ciego de Avila, Cuba2
H. L. Noah, Postgraduate Student, Depot. of Hydrogeology and Engineering Geology1, Assistant, Dept. of Hydraulic Engineering2, e-mail: s233146@stud.spmi.ru

Abstract

For ferrous metallurgy, of scientific and practical interest is the development of technology for processing metallurgical and mining sludge as an additive to produce high-strength pellets with a high content of iron-containing phase for subsequent use as a charge. An increase in the amount of reduced iron for hematite quartzites is achieved by increasing the volume of calcinated coke as a reducing agent, which opens up the possibility of working with difficult-toprocess ores, the reserve potential of which is unlimited. Most of these works are related to the effect of carbon components on iron-containing phases, mainly for non-pelletizing ore materials, as well as powders. A 2 % mixture of red mud (RM) with nepheline extracted from saponite ore sludge by flotation was used as a binding material. As an iron reducer from the hematite phase, coke calcinated at a temperature of 1600 °C was added in an amount of 0.5 to 3.5 %. To study phase transformations, pellets measuring from 12 to 16 mm were obtained in a laboratory plate pelletizer from hematite quartzites and heat-treated at temperatures from 1100 to 1200 °C. The compressive strength with the addition of calcinated coke of more than 3.5% was established, which is 240–250 kg/sample. Calculation of economic indicators has been carried out. An annual reduction of financial risk and capitalization ratio by 10 % will ensure the stable development of pelletizing production using the proposed technology. A Burn rate indicator of 8 to 9 % guarantees the stability of the development of new pelletizing technology in a highly competitive environment. It has been established that the involvement in the processing of difficult-to-process raw materials (hematite ores, nepheline and RM) establishes the demand for poor pellets when blended with rich pellets in blast furnace iron production.

keywords Red mud, coke, hematite quartzite, direct reduction, combined pellets, iron-containing phase
References

1. Sizyakov V. M., Brichkin V. N. On the role of calcium hydrocarboaluminates in improvement of the technology of complex processing of nephelines. Journal of Mining Institute. 2018. Vol. 231. pp. 292–298. DOI: 10.25515/PMI.2018.3.292
2. Trushko V. L., Utkov V. A. Development of import subtituting technologies for increasing productivity of sintering machines and strength of agglomerates. Journal of Mining Institute. 2016. No. 221. pp. 675–680. DOI: 10.18454/pmi.2016.5.675
3. Kudinova A. A., Poltoratckaya M. E., Gabdulkhakov R. R., Litvinova T. E. et al. Parameters influence establishment of the petroleum coke genesis on the structure and properties of a highly porous carbon material obtained by activation of KOH. Journal of Porous Materials. 2022. Vol. 29. pp. 1599–1616.
4. Pratskova S. E., Burmistrov V. A., Starikova A. A. Thermodynamic modeling of oxide melts of the CaO – Al2O3 – SiO2 system. Izvestiya vuzov. Seriya “Khimiya i khimicheskaya tekhnologiya“. 2020. Vol. 63. No. 1. pp. 45–50. DOI: 10.6060/ivkkt.20206301.6054
5. Li C. Development of tools for assessing the magnitude of the technological potential of ferrous metallurgy enterprises. Azimut nauchnykh issledovaniy: ekonomika i upravlenie. 2019. Vol. 8. No. 4 (29). pp. 255–259.
6. Su Z., Li L., Liu Z., Huang C. et al. Fabrication, microstructure, and hydration of nano β-Ca2SiO4 powder by co-precipitation method. Construction and Building Materials. 2021. Vol. 296. 123737. DOI: 10.1016/j.conbuildmat.2021.123737
7. Dyakin P. V., Pivinsky Yu. E., Prokhorenkov D. S., Doroganov V. A. Phase composition, structure and some properties of materials based on HCBS bauxite composition in the Al2O3 – SiO2 – SiC system. Vestnik BGTU imeni V. G. Shukhova. 2020. No. 2. pp. 115–125.DOI: 10.34031/2071-7318-2020-5-2-115-125
8. Alekseev A. I., Zubkova O. S., Vasilyev V. V., Kurtenkov R. V. Pit sump drainage thickening to remove saponite rock suspension. Obogashchenie Rud. 2020. No. 5. pp. 35–40.
9. Cheng S., Shevchenko M., Hayes P. C., Jak E. Experimental phase equilibria studies in the FeO-Fe2O3-CaO-SiO2 system in air: results for the iron-rich region. Metallurgical and Materials Transactions B. 2020. Vol. 51, Iss. 4. pp. 1587–1602. DOI: 10.1007/s11663-020-01886-w
10. Bobkov V. I., Dli M. I., Fedulov A. S. Simulation modeling of the drying process of pellets from apatite-nepheline ore waste. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo institutа (tekhnicheskogo universiteta). 2020. No. 55. pp. 109–115.
11. Grudinskii P. I., Dyubanov V. G., Zinoveev D. V., Zheleznyi M. V. Solid-phase reduction and iron grain growth in red mud in the presence of alkali metal salts. Russian Metallurgy (Metally). 2018. No. 11. pp. 1020–1026. DOI: 10.1134/S0036029518110071
12. Pavlovets V. M. Use of pore-forming additives of plant origin in the production of iron-containing agglomerated raw materials. Vestnik Sibirskogo gosudarstvennogo industrialnogo universiteta. 2019. No. 3 (29). pp. 14–20.
13. Boikov A. V., Savelev R. V., Payor V. A., Erokhina O. O. The control method concept of bulk material behaviour in the pelletizing drum for improving the results of DEM-modeling. CIS Iron and Steel Review. 2019. Vol. 17. pp. 10–13.

14. Ovchinnikova E. L., Gorbunov V. B., Shapovalov A. N. On the influence of the type of magnesium-containing materials on microstructure and properties of the finished agglomerate. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2019. No. 1. pp. 18–23.
15. Boikov A. V., Savelyev R. V., Payor V. A., Erokhina O. O. Evaluation of bulk material behavior control method in technological units using DEM. Part 1. CIS Iron and Steel Review. 2020. Vol. 19. pp. 4–7.
16. Khalifa A. A., Bazhin V. Yu., Shalabi M. E. M. Kh., Abdelmoneim A. et al. Improving the efficiency of carbothermic reduction of red mud during microwave treatment. Vestnik Irkutskogo gosudarstvennogo technicheskogo universiteta. 2021. Vol. 25. No. 2 (157). pp. 264–279.
17. Pyagay I. N., Svakhina Y. A., Titova M. E. et al. Effect of hydrogel molar composition on the synthesis of LTA-type zeolites in the utilization of technogenic silica gel. Silicon. 2024. DOI: 10.1007/s12633-024-03053-1
18. Pelevin A. E., Kornilkov S. V., Dmitriev A. N., Bagazeev V. K. Quality improvement of magnetite concentrate in separate processing of different iron ore types and varieties. MIAB. 2021. Vol. 11-1. pp. 306-317. DOI: 10.25018/0236_1493_2021_111_0_306
19. Gorlanov E. S., Mushihin E. A., Schneider S. R., Kovalskaya K. V. Synthesis of carbon – TiC/TiB2 composites at the electrolytic reduction of fused salts. Journal of The Electrochemical Society. 2023. Vol. 170, Iss. 10. 102501. DOI: 10.1149/1945-7111/acfac4
20. Khalifa A., Bazhin V., Kuskova Y., Abdelrahim A. et al. Study the recycling of red mud in iron ore sintering process. Journal of Ecological Engineering. 2021. Vol. 22. No. 6. pp. 191–201. DOI: 10.12911/22998993/137966
21. Aydin S., Aydin M. E., Beduk F., Ulvi A. Removal of antibiotics from aqueous solution by using magnetic Fe3O4/red mud-nanoparticles. Science of The Total Environment. 2019. Vol. 670. pp. 539–546. DOI: 10.1016/j.scitotenv.2019.03.205
22. Bersenev I. S., Petryshev A. Yu., Kolyasnikov A. Yu., Milokhin E. A. et al. Improving the sinter at PAO NLMK. Steel in Translation. 2018. Vol. 48, Iss. 9. pp. 585–592.
23. Alekseev A. I. Complex processing of apatite-nepheline ores based on the creation of closed technological schemes. Zapiski Gornogo instituta. 2015. Vol. 215. pp. 75–82.
24. Gzogyan T. N., Gzogyan S. R. Comparative analysis of the destruction of unoxidized ferruginous quartzites by the method of volumetric compression. Gornyi informatsionno-analiticheskiy byulleten. 2022. No. 4. pp. 43–55.DOI: 10.25018/0236_1493_2022_4_0_43
25. Hammond O. S., Atri R. S., Bowron D. T., de Campo L. et al. Edler Structural evolution of iron forming iron oxide in a deep eutectic-solvothermal reaction. Nanoscale. 2021. Vol. 13, Iss. 3. pp. 1723–1737. DOI: 10.1039/D0NR08372K
26. Pyagay I. N., Kremcheev E. A., Pasechnik L. A., Yatsenko S. P. Carbonization processing of bauxite residues as an alternative rare metal recovery process. Tsvetnye Metally. 2020. No. 10. pp. 56–63.
27. Piirainen V. Yu., Barinkova A. A. Development of composite materials based on red mud. Obogashchenie Rud. 2023. No. 3. pp. 37–43.
28. Khalifa A. A., Bazhin V. Y., Shalabi M. E. K. Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow. Journal of Mining Institute. 2022. Vol. 254. pp. 261–270. DOI: 10.31897/PMI.2022.18
29. Jin J., Liu X., Yuan S., Gao P. et al. Innovative utilization of red mud through co-roasting with coal gangue for separation of iron and aluminum minerals. Journal of Industrial & Engineering Chemistry. 2021. Vol. 98. pp. 298–307. DOI: 10.1016/j.jiec.2021.03.038
30. Opalev A., Alekseeva S. Methodological substantiation of the choice for optimal modes of equipment operation during the stage-wise concentrate removal in iron ores beneficiation. Journal of Mining Institute. 2022. Vol. 256. pp. 593–602. DOI: 10.31897/PMI.2022.80
31. Hoang M. D., Do Q. M., Le V. Q. Effect of curing regime on properties of red mud based alkali activated materials. Construction and Building Materials. 2020. Vol. 259. 119779. DOI: 10.1016/j.conbuildmat.2020.119779
32. Reichelt L., Hippmann S., Brichkin V. N., Bertau M. Oxidation of sulphur dioxide using microand nanoparticles of various iron oxides. Journal of Inorganic and General Chemistry. 2021. Vol. 647. pp. 1583–1593. DOI: 10.1002/zaac.202100091
33. Schiryaeva E. V., Podgorodetskiy G. S., Malyscheva T. Ya., Detkova T. V., Gorbunov V. B. Effect of low-alkaline red mud on the composition and structure of sintering mix of iron concentrates with different genesis. Izvestiya. Ferrous Metallurgy. 2014. Vol. 57, No 9. P. 13-17. DOI: 10.17073/0368-0797-2014-9-13-17
34. Pelevin A. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Journal of Mining Institute. 2022. Vol. 256. pp. 579–592. DOI: 10.31897/PMI.2022.61
35. Svakhina Y. A., Titova M. E., Pyagay I. N. Products of apatite-nepheline ore processing in the synthesis of low-modulus zeolites. Indonesian Journal of Science and Technology. 2023. Vol. 8, Iss. 1. pp. 49–64. DOI: 10.17509/ijost.v8i1.51979
36. Alekhnovich V., Syasko V., Umanskii A. Multi-parameter complex control of metal coatings on ball plugs of pipeline shut-off valves. Inventions. MDPI. 2024. Vol. 9, Iss. 78. pp. 1-13. DOI: 10.3390/inventions9040078

Language of full-text russian
Full content Buy
Back