Журналы →  Non-ferrous Metals →  2024 →  №2 →  Назад

COMPOSITES AND MULTIPURPOSE COATINGS
Название Carbon-based composite electrodes C – TiC/TiB2. Part 1. Synthesis and oxidizability of composites
DOI 10.17580/nfm.2024.02.03
Автор Gorlanov E. S., Sizyakov V. M., Sharikov F. Yu., Shaikina K. D., Mozulev O. A.
Информация об авторе

Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia

E. S. Gorlanov*, Deputy Director, Scientific Center for Problems of Processing of Mineral and Technogenic Resources, e-mail: Gorlanov_ES@pers.spmi.ru
V. M. Sizyakov, Professor, Scientific Director, Scientific Center for Problems of Processing of Mineral and Technogenic Resources, e-mail: Sizyakov_VM@pers.spmi.ru
F. Yu. Sharikov, Chief Researcher, Scientific Center for Problems of Processing of Mineral and Technogenic Resources, e-mail: Sharikov_FYu@pers.spmi.ru
K. D. Shaikina, Master's Student, Scientific Center for Problems of Processing of Mineral and Technogenic Resources, e-mail: shaikinaksenia@yandex.ru
O. A. Mozulev, Master's Student, Scientific Center for Problems of Processing of Mineral and Technogenic Resources, e-mail: Mozulev_OA@pers.spmi.ru

*Correspondence author.

Реферат

The main results of a lab-scale technological development of a composite material “Carbon – Titanium Carbide/Titanium Diboride” (C – TiC/TiB2) carbothermal synthesis are presented in the work. Initial components – petroleum coke of various fractional compositions, titanium and boron compounds together with the binder – were mixed and calcinated at 1050 °С in air under the layer of preliminarily calcinated coke. Composite material С – TiC/TiB2 synthesized this way demonstrated a rather high resistivity to oxidation in air. In our mind the result was reached due to the formation of a Ti – C – B – О bonding medium on the surface and between the grains of a carbon material. It was found that resistivity to oxidation and degradation under various temperatures can be controlled with glass boron oxide fine condition, its distribution over the surface and with the rate of its evaporation from the electrode surface. An overall mechanism of the composite electrode oxidation process was proposed and the corresponding kinetic parameters of weight loss rate as a function of temperature were found. The proposed technological procedure of composite electrodes formation may be applied for a wide range of С – МеС/МеВ2 based materials, including electrodes for arc steel-smelting and ore-thermal furnaces, magnesium and aluminium cells.

Ключевые слова Composite material, C – TiC/TiB2 composition, oxidation rate, activation energy
Библиографический список

1. Rudko V. A., Gabdulkhakov R. R., Pyagai I. N. Scientific and Technical Substantiation of the Possibility for the Organization of Needle Coke Production in Russia. Journal of Mining Institute. 2023. Vol. 263. pp. 795–809.
2. Nasifullina A. I., Starkov M. K., Gabdulkhakov R. R., Rudko V. A. Petroleum Coking Additive – Raw Material Component for Metallurgical Coke Production. Part 2. Experimental Studies of Obtaining a Petroleum Coking Additive. CIS Iron Steel Review. 2022. Vol. 24. pp. 9–16.
3. Sharikov F. Yu. Taking Into Account Convective Heat and Mass Exchange in Autoclave Reactors When Scaling Hydrothermal and Hydrometallurgical Processes. Tsvetnye Metally. 2022. No. 4. pp. 77–86.
4. Zubkova O. S., Alexeev A. I., Sizyakov V. M., Polyanskiy A. S. Research of Sulfuric Acid Salts Influence on Sedimentation Process of a Clay Suspension. ChemChemTech. 2022. Vol. 65, Iss.1. pp. 44–49.
5. Chukaeva M. A., Matveeva V. A., Sverchkov I. P. Complex Processing of High-Carbon Ash and Slag Waste. Journal of Mining Institute. 2022. Vol. 253. pp. 97–104.
6. Litvinenko V., Bowbriсk I., Naumov I., Zaitseva Z. Global Guidelines and Requirements for Professional Competencies of Natural Resource Extraction Engineers: Implications for ESG Principles And Sustainable Development Goals. Journal of Cleaner Production. 2022. Vol. 338. 130530.

7. Bolobov V. I., Popov G. G. Methodology for Testing Pipeline Steels for Resistance to Grooving Corrosion. Journal of Mining Institute. 2021. Vol. 252. pp. 854–860.
8. Lebedev A. B., Utkov V. A., Khalifa A. A. Sintered Sor bent Utilization for H2S Removal from Industrial Flue Gas in the Process of Smelter Slag Granulation. Journal of Mining Institute. 2019. Vol. 237. pp. 292–297.
9. Vagapova E. A., Ivanov S. L., Ivanova P. V., Khudyakova I. N. Hydraulic Miner with Dewatering of Peat in Travelling Magnetic Field. MIAB. 2023. No. 7. pp. 21–36.
10. Zubkova O., Pyagay I., Pankratieva K., Toropchina M. Development of Composition and Study of Sorbent Properties Based on Saponite. Journal of Mining Institute. 2023. Vol. 259. pp. 21–29.
11. Nemchinova N. V., Konovalov N. P., Konovalov P. N., Doshlov I. O. Reducing the Environmental Impact of Aluminum Production Through the Use of Petroleum Pitch. iPolytech Journal. 2023. Vol. 27, Iss. 4. pp. 800–808.
12. Astapov A. N., Terentieva V. S. Review of Home-Grown Technologies in the Field of Protection of Carbon-bearing Materials from Gaseous Corrosion and Erosion in Plasma’s High-Speed Flow. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya. 2014. Iss. 4. pp. 50–70.
13. Dyskina B. Sh., Kabanova T. V. The Use of Man-Made Waste from the Ural Region to Protect Graphite Electrodes. Advances in Chemistry and Chemical Technology. 2014. Vol. 28, Iss. 10. pp. 39–41.
14. Lebedev V. A., Sedykh V. I. Metallurgy of Magnesium. Yekaterinburg: UGTU-UPI, 2010. 174 p.
15. Ren Y., Qian Y., Xu J., Jiang Y., Zuo J., Li M. Oxidation and Cracking/Spallation Resistance of ZrB2–SiC–TaSi2–Si Coating on Siliconized Graphite at 1500 °C in Air. Ceramics International. 2019. Vol. 46, Iss. 5. pp. 6254–6261.
16. Pat. RU No. 2522011 C1. Int. C25B 11/14. Method of Producing Graphi tised Articles and Apparatus for Realising Said Method. Naumov N. A., Rybjanets I. V., Naprasnik M. M., Bogatyrev S. S. Appl. 09.01.2013, Publ. 10.07.2014, Bull. No. 19.
17. Schnittker A., Nawrocki H. Performance of Graphitized Carbon Cathode Blocks. Light Metals. 2003. pp. 641–645.
18. Pat. RU No. 2245396 C2. Int. C. 25 C3/08. Impregnated Graphite Catho de for Aluminum Electrolysis. Polyus R., Dreyfus J.-M. Appl. 01.02.2000, Publ. 27.01.2005, Bull. No. 3.
19. Feshchenko R. Yu., Eremin R. N., Erokhina O. O., Povarov V. G. Improvement of Oxidation Resistance of Graphite Blocks for the Electrolytic Production of Magnesium by Impregnation with Phosphate Solutions. Part 2. Tsvetnye Metally. 2022. No. 1. pp. 24–29.
20. Fekri M., Jafarzadeh K., Khalife Soltani S. A., Valefi Z., Mazhari Abbasi H. Improvement of Oxidation Resistance of Graphite by Aluminosilicate Coating with Aluminum Metaphosphate Interlayer. Carbon Letters. 2023. Vol. 33. pp. 2095–2108.
21. Eremin R. N. Increasing the Resistance of Graphitized Anodes of Magnes ium Electrolyzers to High-Temperature Oxidation. Abstract of Diss. ... Candidate of Technical Sciences. St. Petersburg, 2021. 22 p.
22. Merkov S. M., Alekseev A. V., Kinshpont E. R., Milinchuk V. K., Lainer Yu. A., Samoilov E. N. Investigation Into the Impregnation of Roasted Anodes of Aluminum Electrolyzers. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2015. Iss. 3. pp. 16–21.
23. Arai Y., Inoue R., Goto K., Kogo Y. Carbon Fiber Reinforced Ultra–High Temperature Ceramic Matrix Compo sites: a Review. Ceramics International. 2019. Vol. 45, Iss. 12. pp. 14481–14489.
24. Nikolaev A. N. Synthesis and Study of Glass-Ceramic Compositions Modified with Oxides and Carbon-Containing Materials. Abstract of Diss. ... Candidate of Technical Sciences. St.Petersburg, 2023. 20 p.
25. Dyskina B. Sh., Lesyuk V. S., Kabanova T. V. Optimization of the Composit ion of the Protective Coating Against High-Temperature Oxidation of Graphite Electrodes. Chemistry and Сhemical Technology. 2015. Vol. 58, Iss. 7. pp. 53–55.
26. Pat. CN No. 107043276. Graphite Electrode Protection Method. Huang Jiaxu, Cheng Xiaozhe, Wang Tanglin. Publ. 15.08.2017.
27. Pat. RU No. 2788294 C1. In t. C25B 11/04; H05B 7/085 Method of Protection of Graphite Electrodes from High-Temperature Oxidation. Erokhina O. O., Feshchenko R. Yu., Pirogova N. A., Eremin R. N. Appl. 28.06.2022, Publ. 17.01.2023, Bull. No. 2.
28. Yang H., Zhao H.-S., Li Z.-Q., Liu X.-X., Zhang K.-H., Wang T.-W., Liu B. R eview of Oxidant Resistant Coating on Graphite Substrate of HTR Fuel Element. Journal of Central South University. 2019. Vol. 26, Iss. 11. pp. 2915–2929.
29. Pat. CN No. 110002839.. Oxidation Resisting Coating Material for Graphite El ectrode in Electric Furnace Smelting. Chao Shangkui, Li Lixiang, Xiao Xiaoshuai. Publ. 12.07.2019.
30. Askerbekov S. K., Chikhray E. V., Ponkratov Yu. V., Nikitenkov N. N. Research on High-Temperature Corrosion of SiC-coating on Graphite. Bulletin of Tomsk Polytechnic University. Geo Assets Engineering. 2019. Vol. 330, Iss. 6. pp. 98–108.
31. Pat. RU 2613397 C1. Int. C04B 35/58. Method of Protective Coating Manufacturing. Bankovskaya I. B., Kolovertnov D.V., Sazonova M. V. Appl. 03.12.2015, Publ. 16.03.2017, Bull. No. 8.
32. Wang P., Li H., Ren X., Yuan R., Hou X., Zhang Yu. HfB2 – SiC – MoSi2 Oxidation Resistance Coating Fabricated Through in-Situ Synthesis for SiC Coated C/C Composites. Journal of Alloys and Compounds. 2017. Vol. 722. pp. 69–76.
33. Pat. US S6632762 B1. Int. Cl. C04B 35/565. Oxidation Resistant Coating for Car bon. Zaykoski J. A., Talmy I. G., Ashkenazi K. J. Appl. 15.11.2001, Publ. 14.10.2003.
34. Li T., Johansen S. T., Solheim A. Uneven Cathode Wear in Aluminium Reduction Cells. Light Metals. 2016. pp. 927–932.
35. Novak B., Ratvik A. P., Wang Zh., Grande T. Formation of Aluminium Carbide in Hall-Héroult Electrolysis Cell Environments. Light Metals. 2018. pp. 1215–1222.
36. Landry J.-R., Fini M. F., Soucy G., Désilets M., Pelletier P., Rivoaland L., Lomb ard D. Laboratory Study of the Impact of the Cathode Grade on the Formation of Deposits on the Cathode Surface in Hall-Héroult Cells. Light Metals. 2018. pp. 1229–1233.
37. Kofstad P. Deviation from Stoichiometry, Diffusion and Electrical Conductivity in Si mple Metal Oxides. Moscow: Mir, 1975. 396 p.
38. Pat. RU 2814568 C1. Int. C04B 35/532, C04B 35/56, C04B 35/58. A Method for Producing Carbon-based Composite Materials. Gorlanov E. S., Mushikhin E. A. Appl. 15.05.2023, Publ. 01.03.2024, Bull. No. 7.

Полный текст статьи Carbon-based composite electrodes C – TiC/TiB2. Part 1. Synthesis and oxidizability of composites
Назад